• Title/Summary/Keyword: rotary inverted pendulum

Search Result 36, Processing Time 0.025 seconds

Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution (차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계)

  • Kim, Hyun-Ki;Lee, Dong-Jin;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.

A Study on Pose Control for Inverted Pendulum System using PID Algorithm (PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구)

  • Jin-Gu Kang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.400-405
    • /
    • 2023
  • Currently, inverted pendulums are being studied in many fields, including posture control of missiles, rockets, etc, and bipedal robots. In this study, the vertical posture control of the pendulum was studied by constructing a rotary inverted pendulum using a 256-pulse rotary encoder and a DC motor. In the case of nonlinear systems, complex algorithms and controllers are required, but a control method using the classic and relatively simple PID(Proportional Integral Derivation) algorithm was applied to the rotating inverted pendulum system, and a simple but desired method was studied. The rotating inverted pendulum system used in this study is a nonlinear and unstable system, and a PID controller using Microchip's dsPIC30F4013 embedded processor was designed and implemented in linear modeling. Usually, PID controllers are designed by combining one or two or more types, and have the advantage of having a simple structure compared to excellent control performance and that control gain adjustment is relatively easy compared to other controllers. In this study, the physical structure of the system was analyzed using mathematical methods and control for vertical balance of a rotating inverted pendulum was realized through modeling. In addition, the feasibility of controlling with a PID controller using a rotating inverted pendulum was verified through simulation and experiment.

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

T-S Fuzzy Model-Based Control of a Rotary-Type Inverted Pendulum (회전형 역진자 시스템의 T-S 퍼지모델 기반 제어)

  • Lee, Hee-Jung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2815-2817
    • /
    • 2005
  • This paper presents an experiment study on the control of a rotary-type inverted pendulum based on the Takagi-Sugeno (T-S) fuzzy model approach. A sufficient condition for stability of the T-S fuzzy control system is given via linear matrix inequalities (LMIs). State-feedback controllers for sub-systems are designed from the sufficient condition via change of variables which is one of the popular LMI techniques. Experimental results on a rotary-type inverted pendulum control show the feasibility of the T-S fuzzy model-based control method.

  • PDF

Design of Rotary Inverted Pendulum System Using Reinforcement Learning (강화학습을 이용한 회전식 도립진자 시스템 설계)

  • Kim, Ju-Bong;Kwon, Do-Hyung;Hong, Yong-Geun;Kim, Min-Suk;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.705-707
    • /
    • 2018
  • Rotary Inverted Pendulum 은 제어분야에서 비선형 제어 시스템을 설명하기 위해 자주 사용되어왔다. 본 논문은 강화학습 에이전트의 환경으로써 Rotary Inverted Pendulum 을 도입하였다. 이를 통해서 강화학습이 실제 세계에서의 복합적인 문제를 해결할 수 있음을 보인다. 강화학습 에이전트의 가상 환경과 실제 환경을 맵핑시키기 위해서 Ethernet 연결 위에 MQTT 프로토콜을 사용하였으며 이를 통해서 경량화된 IoT 분야에서의 강화학습의 활용도를 조명한다.

A Study on The Control of A Rotary Inverted Pendulum Using Fuzzy (Fuzzy를 이용한 Rotary Inverted Pendulum의 제어에 관한 연구)

  • Choi, Seung-Gyu;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.684-686
    • /
    • 1998
  • This paper consider fuzzy control of a single-inverted pendulum attached to the tip end of a rotating arm driven by a direct driven motor. Control objectives stabilization of the pendulum at the upright position and regulation of the arm at an arbitrary specified position. Fuzzy control is an effective method to achieve multiple control objectives in control of nonlinear systems. In this paper, fuzzy logic control is proposed to obtain increased control performance and stability.

  • PDF

Swing-up Control for a Rotary Inverted Pendulum with Restricted Rotation Range (회전변위 제약을 갖는 회전용 도립진자의 스윙업 제어)

  • Lee, Y.S.;Oh, J.J.;Shim, S.Y.;Lim, H.;Seo, J.H.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.548-553
    • /
    • 2008
  • In this paper, we propose a new swing-up control strategy for rotary inverted pendulums with restricted rotation range. The control law is derived from a Lyapunov function. The Lyapunov function is defined as the square of the sum of the absolute value of the total mechanical energy and weighted squares of the arm's angular displacement and velocity. By adjusting the weighting parameters in the Lyapunov function, we can affect the swing-up strategy such that the restriction on rotation range can be satisfied. Finally, we verify the performance of the proposed control law through simulation and experiments.

Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System (회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • In this paper, we propose an optimized fuzzy controller based on Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) for rotary inverted pendulum system. We adopt fuzzy controller to control the rotary inverted pendulum and the fuzzy rules of the fuzzy controller are designed based on the design methodology of Linear Quadratic Regulator (LQR) controller. Simple Genetic Algorithms (SGAs) is well known as optimization algorithms supporting search of a global character. There is a long list of successful usages of GAs reported in different application domains. It should be stressed, however, that GAs could still get trapped in a sub-optimal regions of the search space due to premature convergence. Accordingly the parallel genetic algorithm was developed to eliminate an effect of premature convergence. In particular, as one of diverse types of the PGA, HFCGA has emerged as an effective optimization mechanism for dealing with very large search space. We use HFCGA to optimize the parameter of the fuzzy controller. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy controller leads to superb performance in comparison with the conventional LQR controller as well as SGAs based fuzzy controller.

Experimental Studies of neural Network Control Technique for Nonlinear Systems (신경회로망을 이용한 비선형 시스템 제어의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

Control of Inverted Pendulum Using Continuous Time Deadbeat Control (연속계 Deadbeat제어를 적용한 도립진자 제어)

  • Kim, Jin-Yong;Kim, Seung-Youal;Lee, Keum-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.555-558
    • /
    • 2004
  • Due to the asymptotic property, deadbeat control can hardly applied to the continuous time system control. But some delay element method can deal such a problem. Except delay element method, well-known digital deadbeat control can br used with the aid of som smoothing elements. In this paper, and order smoothing element is used for the smoothing of the digital deadbeat controller. And this element is argumented to the plant, and so control problem is to control digitally the argumented system. We simulated this control system using Matlab language and finally apply this algorithm to the rotary inverted pendulum system.

  • PDF