• Title/Summary/Keyword: root-zone

Search Result 464, Processing Time 0.028 seconds

Effect of Root Zone Cooling on Growth Responses and Tuberization of Hydroponically Grown 'Superior' Potato (Solanum tuberosum) in Summer

  • Chang, Dong-Chil;Jeong, Jin-Cheol;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.340-345
    • /
    • 2006
  • A potato (Solanum tuberosum L. cv. Superior) cultivar was grown in aeroponic cultivation system to investigate the effect of root zone cooling in summer. Based on their nutrient uptake, growth responses, and tuberization, the possibilities for potato seed production were determined. Although shoot growth and early tuberization increased in the conventional non-cooling root zone system (root zone temperature of $25\pm2^{\circ}C$), stolen growth, photosynthesis, transpiration rate and number of tubers produced were higher in the cooling root zone system ($20\pm2^{\circ}C$) than in the non-cooling system. Increasing root zone temperature above $25^{\circ}C$ stimulated absorption of K more than T-N, P, Ca, Fe and Mn. On the other hand, root zone temperatures in the range of $20^{\circ}C$ to $25^{\circ}C$ did not affect Mg contents. The lower uptake and supply to leaves of T-N, Fe and Mn at the high root zone temperature promoted early tuberization and advanced haulm senescence. The results stress the importance of keeping root zone temperature to as low as below 20, particularly in summer under temperate Bone.

Effect of Root Zone Temperature on Root and Shoot Growth of Strawberry (딸기의 뿌리 및 지상부 생육에 미치는 근부온도의 영향)

  • Jun, Ha-Joon;Hwang, Jin-Gyu;Son, Mi-Ja;Choi, Dong-Jin
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • The experiment was investigated the effects of lower root zone temperature on shoot and root growth of 'Akihime' strawberries in aeroponics in cold season. Root growth was decreased with decrease of root zone temperature, especially in lateral roots. Elongation of main roots was highest in $18^{\circ}C$ of root zone temperature. Number of lateral roots and length of lateral roots were lowest in $8^{\circ}C$ of root zone temperature. Lower root zone temperature resulted significantly in decrease of fresh weight of root and shoot and leaf area of strawberry. But there were no significant statistical differences in shoot fresh weight and leaf area in $8^{\circ}C$ and $13^{\circ}C$ of root zone temperature. Leaf length, leaf width and number of leaves of strawberry were decreased in lower root zone temperature. The results of this experiment will be utilized in the winter season cultivation for strawberry in hydroponics.

Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe (연질 PE관을 이용한 여름딸기 부분냉방기술 개발)

  • Moon, Jong Pil;Kang, Geum Choon;Kwon, Jin Kyung;Lee, Su Jang;Lee, Jong Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.

Effect of the root-zone temperature grown in the greenhouse on the growth of chives

  • Jung, Kwan-hui;Han, Sangjun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.222-222
    • /
    • 2017
  • This study aimed to determine an optimal temperature of root zone for the chive cultivation in a greenhouse during the winter season that may raise the possibility of chive (Allium schoenoprasum L.) harvest any time year-round by reducing energy consumption. The maximum and minimum temperatures of root zone were 26.8 and $19.8^{\circ}C$ for the R-Z20, 28.3 and $23.6^{\circ}C$ for the R-Z25 and 22.4 and $14.3^{\circ}C$ for the control. The highest fresh weights of shoot and root, plant height, root length and stem diameter were observed in the R-Z20 treatment. There was no significant difference in the growth between the R-Z25 and control treatment. These results suggest that the optimal temperature of root zone is $20^{\circ}C$ for the chive cultivation in the greenhouse during winter season.

  • PDF

Spot Heating Technology Development for Strawberry Cultivated in a Greenhouse by Using Hot Water Pipe (온수배관을 이용한 시설딸기 부분난방기술 개발)

  • Moon, Jongpil;Kang, Geum-Choon;Kwon, Jin-Kyung;Paek, Yee;Lee, Tae Seok;Oh, Sung-Sik;Nam, Myeong-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.71-79
    • /
    • 2016
  • The effects of spot heating for growing the strawberry cultivated in a plastic greenhouse during the winter that were estimated in Nonsan strawberry experiment station located in Chungnam. The temperature of water for heating was controlled by a electric hot water boiler and kept at the range of $22{\sim}24^{\circ}C$. Heating pipes were set up in root zone for root zone heating and very close to crown for crown heating. Spot heating effects were estimated by applying spot heating system in three test factors of heating root zone, crown only and crown plus root zone. The material for crown heating pipe was white low density polyethylene and the nominal diameter of that pipe was 16 mm. The material for root zone heating pipe was flexible stainless steel and the nominal diameter of that pipe was 15A. The flow rate of heating water circulation was 480 L/h and water circulation lasted for all day long. Temperatures, harvest yield by test beds were surveyed from Nov. 10, 2013 to Apr. 29, 2014. The temperature of crown spot for crown heating bed was at the range of $13.0{\sim}17.0^{\circ}C$ during the night and that of crown spot in control bed was at the range of $8.0{\sim}14.0^{\circ}C$. Also, the temperature of root zone for root zone heating bed was at the range of $18{\sim}21.0^{\circ}C$ and that of root zone in control bed was at the range of $13.0{\sim}15.0^{\circ}C$. The cumulative yield growth rate in earlier harvest period (from Dec. 20 to Mar. 15) of crown heating bed was 43% compared with that of control bed and the cumulative yield of crown plus root zone heating bed was 39 % and that of root zone heating bed was 39 %.

Shaping Ability of Four Rotary Nickel-Titanium Instruments to Prepare Root Canal at Danger Zone (네 가지 전동 Ni-Ti 파일의 danger zone에서의 근관성형력)

  • Choi, Seok-Dong;Jin, Myoung-Uk;Kim, Ki-Ok;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.446-453
    • /
    • 2004
  • The aim of this study was to evaluate the shaping abilities of four different rotary nickel-titanium instruments with anticurvature motion to prepare root canal at danger zone by measuring the change of dentin thickness in order to have techniques of safe preparation of canals with nickel-titanium files. Mesiobuccal and mesiolingual canals of forty mesial roots of extracted human lower molars were instrumented using the crown-down technique with ProFile, $GT^{TM}$ Rotary file, Quantec file and $ProTaper^{TM}$. In each root, one canal was prepared with a straight up-and-down motion and the other canal was with an anticurvature motion. Canals were instrumented until apical foramens were up to size of 30 by one operator. The muffle system was used to evaluate the root canal preparation. After superimposing the pre- and post-instrumentation canal. change in root dentin thickness was measured at the inner and outer sides of the canal at 1. 3, and 5 mm levels from the furcation. Data were analyzed using two-way ANOVA. Root dentin thickness at danger zone was significantly thinner than that at safe zone at all levels (p < 0.05). There was no significant difference in the change of root dentin thickness between the straight up-and-down and the anticurvature motions at both danger and safe zones in all groups (p > 0.05). ProTaper removed significantly more dentin than other files especially at furcal 3 mm level of danger and safe zones (p < 0.05) Therefore, it was concluded that anticurvature motion with nickel-titanium rotary instruments does not seem to be effective in danger zone of lower molars.

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

Control of Root-Knot Nematode(Meloidogyne incognita Chitwood) by Root Zone Warming System (지중가온시설을 이용한 고구마뿌리흑선충 방제)

  • 신용습;연일권;최성국;최부술;이우승
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 1998
  • This experiment was conducted to investigate the effect of soil heating on control of root-knot nematode(Meloidogyne incognita Chitwood) by root zone warming system. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge The lowest soil temperatures at 20cm depth were set at 3$0^{\circ}C$, 4$0^{\circ}C$, $50^{\circ}C$ and non-warming. under soil submerging condition and non-submerging condition. Soil heating was done for 5 days(120 hours) from Aug. 1 to Aug. 5. The root-knot nematode juvenile densities of 4$0^{\circ}C$ under submerging condition. and $50^{\circ}C$ under non-submerging condition were 0 which was expected lower than the economic injury level. The contents of OM P$_2$ $O_{5}$, Ca Mg and EC in soil were decreased by root zone warming The EC was considerably lowered under submerging condition.

  • PDF

The TRC Test for Cold Crack Susceptibility of Welded Zone for ABS EH32 Steel (인장구속 균열시험에 의한 ABS EH 32강 용접부 저온 균열 감수성 시험)

  • 정수원;박동환;김대헌
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 1984
  • In this study, cold crack susceptibility of high strength steel (ABS EH32 Steel) welded zone with shielded metal are welding was investigated by tensile restraint cracking test method. Effects of diffusible hydrogen content on root cracking, lower critical stress, crack initiation and fracture mode, hardness value distribution of welded zone and fractograph were mainly investigated. Following conclusions are made: 1. In the view of the lower critical stress level, wet electrode, containing much diffusible hydrogen content shows lower value than dried electrode. 2. Hardness value(Hv 5kg) in Heat Affected Zone of wet electrode is higher than that of dried electrode caused by hydrogen embrittlement. 3. In the case of wet electrode, root crack is initiated and propagated in Heat Affected Zone and then propagated to weld metal, but using of dried electrode, root crack is initiated in Heat Affected Zone and propagated to weld metal without propagating in HAZ. 4. For wet electrode, quasi-cleavage fracture mode is majorly observed on the fracture surface of HAZ and partially of weld metal due to hydrogen embrittlement.

  • PDF