• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.034 seconds

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

Estimation of Power Using PV System Model Formula and Machine Learning (태양광시스템 모델식과 기계학습을 이용한 발전성능 추정)

  • Hyun Gyu Oh;Woo Gyun Shin;Young Chul Ju;Soo Hyun Bae;Hye Mi Hwang;Gi Hwan Kang;Suk Whan Ko;Hyo Sik Chang
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In this paper, a machine learning model by using a regression algorithm is proposed to estimate the power generation performance of the BIPV system. The physical model formula for estimating the generation performance and the proposed model were compared and analyzed. For the physical model formula, simple efficiency model, temperature correction model, and regressive physics model for changing an irradiance were used. As a result, when comparing the regressive physics model for changing an irradiance and the proposed model with the actual generation measured data, the respective RMSE values are 0.1497 kW, 0.0451 kW and the accuracy values are 86.44%, and 96.56%. Therefore, the proposed model implemented in this experiment can be useful in estimating power generation.

Machine Learning-based hydrogen charging station energy demand prediction model (머신러닝 기반 수소 충전소 에너지 수요 예측 모델)

  • MinWoo Hwang;Yerim Ha;Sanguk Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.47-56
    • /
    • 2023
  • Hydrogen energy is an eco-friendly energy that produces heat and electricity with high energy efficiency and does not emit harmful substances such as greenhouse gases and fine dust. In particular, smart hydrogen energy is an economical, sustainable, and safe future smart hydrogen energy service, which means a service that stably operates based on 'data' by digitally integrating hydrogen energy infrastructure. In this paper, in order to implement a data-based hydrogen charging station demand forecasting model, three hydrogen charging stations (Chuncheon, Sokcho, Pyeongchang) installed in Gangwon-do were selected, supply and demand data of hydrogen charging stations were secured, and 7 machine learning and deep learning algorithms were used. was selected to learn a model with a total of 27 types of input data (weather data + demand for hydrogen charging stations), and the model was evaluated with root mean square error (RMSE). Through this, this paper proposes a machine learning-based hydrogen charging station energy demand prediction model for optimal hydrogen energy supply and demand.

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

Verification of the KMA Ocean Model NEMO against Argo Floats and Drift Buoys: a Comparison with the Up-to-date US Navy HYCOM (Argo 플로트와 표류부이 관측자료를 활용한 기상청 전지구 해양모델 (NEMO)의 검증: 최신 미해군 해양모델(HYCOM)과 비교)

  • Hyun, Seung-Hwon;Hwang, Seung-On;Lee, Sang-Min;Choo, Sung-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • This paper describes verification results for the ocean analysis field produced by the Nucleus for European Modelling of the Ocean (NEMO) of the Korea Meteorological Administration (KMA) against observed Argo floats and drift buoys over the western Pacific Ocean and the equatorial Pacific during 2020~2021. This is confirmed by a comparison of the verification for the newly updated version of the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA) against same observations. NEMO shows that the vertical ocean temperature is much closer to the Argo floats than HYCOM for most seasons in terms of bias and root mean square error. On the other hand, there are overall considerable cold biases for HYCOM, which may be due to the more rapid decreasing temperature at the shallow thermocline in HYCOM. Conclusion demonstrated that the NEMO analysis for ocean temperature is more reliable than the analysis produced by the latest version of HYCOM as well as by the out-of-date HYCOM applied to the precedent study. The surface ocean current produced by NEMO also shows 14% closer to the AOML (Atlantic Oceanographic and Meteorological Laboratory) in situ drift buoys observations than HYCOM over the western Pacific Ocean. Over the equatorial Pacific, however, HYCOM shows slightly closer to AOML observation than NEMO in some seasons. Overall, this study suggests that the resulting information may be used to promote more use of NEMO analysis.

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.457-468
    • /
    • 2023
  • Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

Halo CME mass estimated by synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2021
  • In this study, we suggest a new method to estimate the mass of a halo coronal mass ejection (CME) using synthetic CMEs. For this, we generate synthetic CMEs based on two assumptions: (1) the CME structure is a full ice-cream cone, (2) the CME electron density follows a power-law distribution (ρcme0r-n). The power-law exponent n is obtained by minimizing the root mean square error between the electron number density distributions of an observed CME and the corresponding synthetic CME at a position angle of the CME leading edge. By applying this methodology to 57 halo CMEs, we estimate two kinds of synthetic CME mass. One is a synthetic CME mass which considers only the observed CME region (Mcme1), the other is a synthetic CME mass which includes both the observed CME region and the occulted area larger than 4 solar radii (Mcme2). From these two cases, we derive conversion factors which are the ratio of a synthetic CME mass to an observed CME mass. The conversion factor for Mcme1 ranges from 1.4 to 3.0 and its average is 2.0. For Mcme2, the factor ranges from 1.8 to 5.0 with the average of 3.0. These results imply that the observed halo CME mass can be underestimated by about 2 times when we consider the observed CME region, and about 3 times when we consider the region including the occulted area. Interestingly these conversion factors have a very strong negative correlation with angular widths of halo CMEs.We also compare the results with the CME mass estimated from STEREO observations.

  • PDF

Evaluation of regulating gate impact in small agricultural watershed using coupled SWAT-CFD models (유역-전산유체역학 연계 모형을 이용한 농촌 소유역 하류의 제수문 영향 평가)

  • Kim, Dong Hyeon;;Kim, Da-Yun;Jang, Taeil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.473-473
    • /
    • 2021
  • 새만금 유역의 하류 평야지대는 농업 관개 및 배수가 제수문의 영향을 받고 있으며, 상류 축산밀집시설에 따라 농업 비점오염원 유입이 수계 환경오염에 미치는 영향을 평가하는 것이 필요하다. 본 연구에서는 새만금 유역의 하류 제수문을 대상으로 유역 모형과 전산유체역학 모형을 이용하여 유입, 유출 그리고 오염원 등의 영향을 분석하고자 한다. SWAT (Soil and water assessment tool)은 유역 모형으로 수문순환 및 비점오염원을 모의하기 위해 개발한 모형이다. CFD(Computational fluid dynamics)는 구조물을 설계하고 유체, 기체 등의 역학을 모의할 수 있다. SWAT 모형을 이용하여 농촌 소유역을 대상으로 하류 제수문 위치를 출구로 지정하여 수문을 모의하고 그 결과자료는 CFD에 입력할 수 있다. CFD는 하류 제수문 구조물을 설계하고 SWAT 모형의 수문자료를 입력하여 제수문의 유입 및 유출 영향을 평가할 수 있다. SWAT 모형 구축을 위해 2015-2018년까지 기상, 수위, 유량 관측자료를 수집하였으며, 보정기간과 검증기간은 각 2년이며, 모형 성능 검증에 사용한 적합성 평가 지수는 R2 (Determine coefficient), RMSE (Root mean square error), 그리고 NSE (Nash-sutcliffe efficiency coefficient)를 사용하였다. 모형의 보정은 SWAT-CUP 자동보정프로그램을 사용하였으며, 모형의 보정지수는 NSE를 사용하였고, 1,000회 반복 수행을 통해 매개변수를 최적화하였다. CFD 모형은 제수문의 실제 규격을 바탕으로 동일한 구조를 고려하였으며, 수문조작을 고려하여 유입 및 유출을 모의하였다. 본 연구는 유역차원과 구조물 차원의 모델링을 연계하는 것으로 최근 기후변화에 따라 급격히 변화하는 유역환경에 대처할 수 있는 방안이 될 수 있을 것이며, 제수문 시설을 관리하는 기관에서도 합리적인 운영방안에 대한 기초자료로 기여할 수 있을 것으로 사료된다.

  • PDF

Proposal of Hydrologic Performance Evaluation Method for the Improvement of Rainwater Management and Utilization of G-SEED (녹색건축 인증제도의 빗물관리 및 이용 항목의 개선을 위한 수문학적 성능평가 방법 제안)

  • Park, Jin;Han, Mooyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.158-158
    • /
    • 2021
  • 도시에 불투수면적이 증가하고, 기후변화가 극심해져감에 따라 홍수 및 열섬현상과 같은 도시의 물 문제가 발생하고 있다. 이를 해결하기 위한 정책의 일환으로 우리나라의 녹색건축인증제도(Green Standard for Energy and Environmental Design, G-SEED)에서는 물순환 관리를 평가하고 있다. 하지만, 현재 G-SEED의 평가방법을 살펴보면 빗물관리시설의 설치 정도로 평가하고 있고, 강우 특성 또한 고려되고 있지 않다. 그러므로 본 연구에서는 G-SEED의 빗물관리 및 이용 항목에 대해 수문 모델을 통해 효과를 정량화함으로써 성능에 따라 평가할 수 있는 방법을 제안하였다. 빗물관리 항목에서는 유출저감률을, 빗물이용 항목에서는 빗물이용률을 평가지표로 선정하였고, 각 평가인자를 산출하기 위하여 개념모델을 적용하였다. 빗물이용시설의 경우 초기우수배제장치 용량과 필터 효율에 따른 빗물유입량의 변화와 급수인원에 따른 수요량 변화를 고려한 수문모델을 개발하였고, 수요량과 빗물저장조 용량에 따른 유출저감률과 빗물이용률을 알아보기 위해 MATLAB을 이용하여 모의해보았다. 또한, 옥상녹화의 경우에는 강우, 저류, 증발산, 유출을 고려한 수문흐름모델을 적용하였고, 토층의 두께와 배수(저장) 층의 용량에 따라 모의하여 평가기준을 선정하였다. 제안된 수문모델의 검증을 위하여 서울대학교 기숙사와 35동 옥상녹화의 실측데이터를 비교하였고, 적용성 평가를 위해 RMSE(Root Mean Square Error)와 NSE(Nash-Sutcliffe Efficiency)를 이용하였다. 본 연구에서 제안된 방법을 통해 빗물관리시설의 수문학적 성능에 따른 평가가 가능해질 것이며 설계자와 건축가들로 하여금 실질적인 효과를 내는 시설을 설치하게끔 유도할 수 있을 것이다.

  • PDF

Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images (Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정)

  • Son, Moobeen;Chung, Jeehun;Lee, Yonggwan;Woo, Soyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF