This study analyzes the application possibilities of the satellite-derived precipitation to water resources field. Precipitation observed by ground gauges and climate prediction center morphing method (CMORPH) which is global scale precipitation estimated by National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) using satellite images are compared to evaluate the quality of precipitation estimated from satellite images. Precipitation data from 10-years (2002 to 2011) is applied. The correlation coefficient of 1-day cumulative precipitation is 0.87, but the 1-year precipitation is 4 to 5 times different. The variability of root mean square error (RMSE) become smaller as temporal resolution lower. On the results for the watershed scale, the precipitation from gauges and CMORPH shows better agreement as the watershed become larger.
Park, Tae Chang;Kim, Beom Seok;Kim, Tae Young;Jin, Il Bong;Yeo, Yeong Koo
Korean Journal of Metals and Materials
/
v.56
no.11
/
pp.813-821
/
2018
The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.
Wong, Man-Sing;Lee, Kwon-Ho;Kim, Young-Joon;Nichol, Janet Elizabeth;Li, Zhangqing;Emerson, Nick
Korean Journal of Remote Sensing
/
v.23
no.3
/
pp.161-169
/
2007
A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. 'In-situ' measurements of SS and SSS were also compared with coincident MODIS spectral reflectance measurements over the ocean surface. This is the first study of SSS modeling in Southeast Asia using earth observation satellite images. Three analysis techniques such as multiple regression, linear regression, and principal component analysis (PCA) were performed on the MODIS data and the 'in-situ' measurement datasets of the SS and SSS. Correlation coefficients by each analysis method shows that the best correlation results are multiple regression from the 500m spatial resolution MODIS images, $R^2$= 0.82 for SS and $R^2$ = 0.81 for SSS. The Root Mean Square Error (RMSE) between satellite and 'in-situ' data are 0.92mg/L for SS and 1.63psu for SSS, respectively. These suggest that 500m spatial resolution MODIS data are suitable for water quality modeling in the study area. Furthermore, the application of these models to MODIS images of the Hong Kong and Pearl River Delta (PRO) Region are able to accurately reproduce the spatial distribution map of the high turbidity with realistic SS concentrations.
Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
Korean Journal of Remote Sensing
/
v.26
no.6
/
pp.605-615
/
2010
This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).
This study, as the temporal and spatial data for the real price apartment in Seoul from January 2006 to June 2013, empirically compared and analyzed the estimation result of apartment price using OLS by hedonic price model for the problem of space-time correlation, temporal autoregressive model (TAR) considering temporal effect, spatial autoregressive model (SAR) spatial effect and spatiotemporal autoregressive model (STAR) spatiotemporal effect. As a result, the adjusted R-square of STAR model was increased by 10% compared that of OLS model while the root mean squares error (RMSE) was decreased by 18%. Considering temporal and spatial effect, it is observed that the estimation of apartment price is more correct than the existing model. As the result of analyzing STAR model, the apartment price is affected as follows; area for apartment(-), years of apartment(-), dummy of low-rise(-), individual heating (-), city gas(-), dummy of reconstruction(+), stairs(+), size of complex(+). The results of other analysis method were the same. When estimating the price of real estate using STAR model, the government officials can improve policy efficiency and make reasonable investment based on the objective information by grasping trend of real estate market accurately.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.153-153
/
2019
Evapotranspiration (ET) is an important component of hydrological processes. Accurate estimates of ET variation are of vital importance for natural hazard adaptation and water resource management. This study first developed a soil water index (SWI)-based Priestley-Taylor algorithm (SWI-PT) based on the enhanced vegetation index (EVI), SWI, net radiation, and temperature. The algorithm was then compared with a modified satellite-based Priestley-Taylor ET model (MS-PT). After examining the performance of the two models at 10 flux tower sites in different land cover types over East Asia and Australia, the daily estimates from the SWI-PT model were closer to observations than those of the MS-PT model in each land cover type. The average correlation coefficient of the SWI-PT model was 0.81, compared with 0.66 in the original MS-PT model. The average value of the root mean square error decreased from $36.46W/m^2$ to $23.37W/m^2$ in the SWI-PT model, which used different variables of soil moisture and vegetation indices to capture soil evaporation and vegetative transpiration, respectively. By using the EVI and SWI, uncertainties involved in optimizing vegetation and water constraints were reduced. The estimated ET from the MS-PT model was most sensitive (to the normalized difference vegetation index (NDVI) in forests) to net radiation ($R_n$) in grassland and cropland. The estimated ET from the SWI-PT model was most sensitive to $R_n$, followed by SWI, air temperature ($T_a$), and the EVI in each land cover type. Overall, the results showed that the MS-PT model estimates of ET in forest and cropland were weak. By replacing the fraction of soil moisture ($f_{sm}$) with the SWI and the NDVI with the EVI, the newly developed SWI-PT model captured soil evaporation and vegetation transpiration more accurately than the MS-PT model.
Journal of The Korean Society of Agricultural Engineers
/
v.61
no.6
/
pp.123-132
/
2019
This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.
Park, Dong-Hyeok;Ajmal, Muhammad;Ahn, Jae-Hyun;Kim, Tae-Woong
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.98-98
/
2015
강우-유출 모형을 이용하여 직접유출량을 산정할 경우, 유역의 유효우량을 산정하기 위해 NRCS-CN(Natural Resources Conservation Service - curve number) 방법을 주로 사용한다. 그러나 NRCS-CN 방법은 초기손실량을 잠재보유수량의 20%로 가정하고 유효우량을 산정한다. 이는 초기손실량을 과대 추정하여 유효우량의 과소산정을 초래한다. 따라서 본 연구에서는 관측된 강우-유출사상을 바탕으로 초기손실량을 추정하는 방법을 보완하였다. 우리나라 홍수기 동안 강우-유출 자료를 확보한 15개의 유역에 대해 658개의 강우-유출사상에 대하여 NRCS-CN 방법을 기반으로, 초기손실량과 유효우량을 산정하고 이를 관측 직접유출량과 비교 분석하였다. 유효우량을 산정하는 방법으로는 NRCS-CN 방법(M1), NRCS-CN 방법에서 초기손실량계수를 감소시킨 방법(M2), 관측 강우-유출 관계를 바탕으로 본 연구에서 제안하는 방법(M3)을 적용하였다. 또한 USDA에서 제시하는 CN값(CNT)과 유역의 경사도를 고려하여 조정한 CN값(CNC)을 각 방법들에 적용하였다. 모형의 성과는 Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), 그리고 Percent Bias (PBIAS) 등을 이용하여 평가되었다. 그 결과 CNT를 M1, M2, M3에 적용한 경우 각 유역에서 평균적으로 [RMSE(0.24, 18.12, and 16.04), NSE(0.54, 0.73, and 0.79), PBIAS(36.54, 20.25, and 12.00)]로 나타났으며. 이와 비슷하게 CNC를 M1, M2, M3에 적용하였을 경우의 각 유역에서 평균적으로 [RMSE(17.17, 15.88, and 13.82), NSE(0.76, 0.80, and 0.85), PBIAS(3.06, 4.47, and 0.11)]로 나타났다. 본 연구에서 제안된 M3방법을 사용하여 추정한 유효우량이 관측된 직접유출량과 통계학적으로 가장 가까운 값으로 나타났다.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.168-168
/
2016
도시화는 수문학적으로 산림이나 농경지와 같은 투수지역을 건물, 도로 등의 불투수 지역으로 변화시키는 것이며, 이로 인하여 홍수파의 도달시간이 줄어들고 첨두유량이 증가하는 등의 수문변화를 수반하게 된다. 도로나 건물 등이 대부분을 차지하고 있는 도시지역에서는 지표면이나 식생으로부터 대기 중으로 방출되는 증발산량이 농촌이나 산림지역보다 상대적으로 적으며, 강우시 토양중의 침투량과 지표면의 저류량도 도시지역에서는 매우 적게 나타난다. 도시화 전 후의 물순환특성을 평가하기 위해서는 도시 개발 전 후의 장단기 수문 관측 결과를 기초로 물순환계를 구성하는 인자간의 관계를 정량적으로 분석하고 물순환계 구성요소의 일부 변화가 다른 부분에 미치는 영향을 평가할 필요가 있다. 즉, 도시화가 물순환 구조 변동에 미치는 영향을 정량적으로 평가함으로써 유역 전체의 건전한 물순환 체계를 유지할 수 있는 대책 수립이 가능하다. 본 연구에서는 판교신도시 개발에 따른 유역에서의 홍수 및 유출특성 변화의 정량적 규명을 목적으로 두고 집중형 모형인 HEC-HMS모형과 물리적 기반의 준분포형 모형인 CAT을 이용하여 판교신도시 개발전의 정량적 물순환 특성을 평가하였다. 대상유역은 지방 2급 하천 탄천의 지류인 운중천, 금토천이 포함된 판교유역이며, 유역면적은 약 $25km^2$이다. 이 중 유역면적의 38 %에 해당하는 지역이 개발되었으며 개발된 지역은 하류부근에 위치한다. 강우자료는 지상 강우관측소인 수원 관측소의 지점강우 자료를 이용하였다. 도시 개발 전 단계에 해당하는 2006년, 2007년 호우사상 중 누적강우량 50 mm 이상인 호우사상을 추출하여 모의를 수행하였다. 유출 특성 분석을 위해 12개의 소유역과 5개의 하도로 구성하였으며 HEC-HMS의 손실량 산정방법으로는 SCS Curve Number법을 사용하였고, 단위도는 Clark 단위 도법을 적용하였다. CAT모형에서 침투는 Rainfall Excess방법, 하도추적은 Muskingum 방법을 적용하였다. 관측치와 모의치의 적합도 검증을 위해 RMSE (Root Mean Square Error), NSE (Nash Sutcliffe Efficiency), $R^2$값을 산정하여 비교 분석하였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.225-225
/
2015
Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.