• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.037 seconds

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process (복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석)

  • Jee, Joon-Bum;Min, Jae-Sik;Jang, Min;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

Development and Evaluation of Urban Canopy Model Based on Unified Model Input Data Using Urban Building Information Data in Seoul (서울 건물정보 자료를 활용한 UM 기반의 도시캐노피 모델 입력자료 구축 및 평가)

  • Kim, Do-Hyoung;Hong, Seon-Ok;Byon, Jae-Yong;Park, HyangSuk;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.417-427
    • /
    • 2019
  • The purpose of this study is to build urban canopy model (Met Office Reading Urban Surface Exchange Scheme, MORUSES) based to Unified Model (UM) by using urban building information data in Seoul, and then to compare the improving urban canopy model simulation result with that of Seoul Automatic Weather Station (AWS) observation site data. UM-MORUSES is based on building information database in London, we performed a sensitivity experiment of UM-MOURSES model using urban building information database in Seoul. Geographic Information System (GIS) analysis of 1.5 km resolution Seoul building data is applied instead of London building information data. Frontal-area index and planar-area index of Seoul are used to calculate building height. The height of the highest building in Seoul is 40m, showing high in Yeoido-gu, Gangnam-gu and Jamsil-gu areas. The street aspect ratio is high in Gangnam-gu, and the repetition rate of buildings is lower in Eunpyeong-gu and Gangbuk-gu. UM-MORUSES model is improved to consider the building geometry parameter in Seoul. It is noticed that the Root Mean Square Error (RMSE) of wind speed is decreases from 0.8 to 0.6 m s-1 by 25 number AWS in Seoul. The surface air temperature forecast tends to underestimate in pre-improvement model, while it is improved at night time by UM-MORUSES model. This study shows that the post-improvement UM-MORUSES model can provide detailed Seoul building information data and accurate surface air temperature and wind speed in urban region.

Validation of Significant Wave Height from Satellite Altimeter in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Woo, Hye-Jin;Lee, Eun-Young;Hong, Sungwook;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.631-644
    • /
    • 2013
  • Significant Wave Height (SWH) data measured by satellite altimeters (Topex/Poseidon, Jason-1, Envisat, and Jason-2) were validated in the seas around Korea by comparison with wave height measurements from marine meteorological buoy stations of Korea Meteorological Administration (KMA). A total of 1,070 collocation matchups between Ku-band satellite altimeter data and buoy data were obtained for the periods of the four satellites from 1992 to the present. In the case of C-band and S-band observations, 1,086 matchups were obtained and used to assess the accuracy of satellite SWH. Root-Mean-Square (RMS) errors of satellite SWH measured with Ku-band were evaluated to roughly 0.2_2.1 m. Comparisons of the RMS errors and bias errors between different frequency bands revealed that SWH observed with Ku-band was much more accurate than other frequencies, such as C-band or S-band. The differences between satellite SWH and buoy wave height, satellite minus buoy, revealed some dependence on the magnitude of the wave height. Satellite SWH tended to be overestimated at a range of low wave height of less than 1 m, and underestimated for high wave height of greater than 2 m. Such regional characteristics imply that satellite SWH should be carefully used when employed for diverse purposes such as validating wave model results or data assimilation procedures. Thus, this study confirmed that satellite SWH products should be continuously validated for regional applications.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

Monitoring Onion Growth using UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.306-317
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) became popular platforms for the collection of remotely sensed data in the last years. This study deals with the monitoring of multi-temporal onion growth with very high resolution by means of low-cost equipment. The concept of the monitoring was estimation of multi-temporal onion growth using normalized difference vegetation index (NDVI) and meteorological factors. For this study, UAV imagery was taken on the Changnyeong, Hapcheon and Muan regions eight times from early February to late June during the onion growing season. In precision agriculture frequent remote sensing on such scales during the vegetation period provided important spatial information on the crop status. Meanwhile, four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.) and fresh weight (F.W.) were measured for about three hundred plants (twenty plants per plot) for each field campaign. Three meteorological factors included average temperature, rainfall and irradiation over an entire onion growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 88% and 68% of the P.H. and F.W. with a root mean square error (RMSE) of 7.29 cm and 59.47 g, respectively. And $NDVI_{UAV}$ in the model explain 43% of the L.N. with a RMSE of 0.96. These lead to the result that the characteristics of variations in onion growth according to $NDVI_{UAV}$ and other meteorological factors were well reflected in the model.

A Comparative Study of Unit Hydrograph Models for Flood Runoff Simulation at a Small Watershed (농업소유역의 홍수유출량 추정을 위한 단위도 모형 비교연구)

  • Seong, Choung-Hyun;Kim, Sang-Min;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.17-27
    • /
    • 2008
  • In this study, three different unit hydrograph methods (Snyder, SCS, Clark) in the HEC-HMS were compared to find better fit with the observed data in the small agricultural watershed. Baran watershed, having $3.85km^2$ in size, was selected as a study watershed. The watershed input data for HEC-HMS were retrieved using HEC-GeoHMS which was developed to assist making GIS input data for HEC-HMS. Rainfall and water flow data were monitored since 1996 for the study watershed. Fifty five storms from 1996 to 2003 were selected for model calibration and verification. Three unit hydrograph methods were compared with the observed data in terms of simulated peak runoff, peak time and total direct runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the observed peak runoff was $0.8666{\sim}0.8736$ and root mean square error, RMSE, was $5.25{\sim}6.37\;m^3/s$ for calibration stages. In the model verification, $R^2$ for the observed peak runoff was $0.8588{\sim}0.8638$ and RMSE was $9.57{\sim}11.80\;m^3/s$, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well agreed with the observed data. SCS unit hydrograph method showed best fit, but there was no significant difference among the three unit hydrograph methods.

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

Modelling land surface temperature using gamma test coupled wavelet neural network

  • Roshni, Thendiyath;Kumari, Nandini;Renji, Remesan;Drisya, Jayakumar
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.265-279
    • /
    • 2017
  • The climate change has made adverse effects on land surface temperature for many regions of the world. Several climatic studies focused on different downscaling techniques for climatological parameters of different regions. For statistical downscaling of any hydrological parameters, conventional Neural Network Models were used in common. However, it seems that in any modeling study, uncertainty is a vital aspect when making any predictions about the performance. In this paper, Gamma Test is performed to determine the data length selection for training to minimize the uncertainty in model development. Another measure to improve the data quality and model development are wavelet transforms. Hence, Gamma Test with Wavelet decomposed Feedforward Neural Network (GT-WNN) model is developed and tested for downscaled land surface temperature of Patna Urban, Bihar. The results of GT-WNN model are compared with GT-FFNN and conventional Feedforward Neural Network (FFNN) model. The effectiveness of the developed models is illustrated by Root Mean Square Error and Coefficient of Correlation. Results showed that GT-WNN outperformed the GT-FFNN and conventional FFNN in downscaling the land surface temperature. The land surface temperature is forecasted for a period of 2015-2044 with GT-WNN model for Patna Urban in Bihar. In addition, the significance of the probable changes in the land surface temperature is also found through Mann-Kendall (M-K) Test for Summer, Winter, Monsoon and Post Monsoon seasons. Results showed an increasing surface temperature trend for summer and winter seasons and no significant trend for monsoon and post monsoon season over the study area for the period between 2015 and 2044. Overall, the M-K test analysis for the annual data shows an increasing trend in the land surface temperature of Patna Urban.

Impact of Wind Profiler Data Assimilation on Wind Field Assessment over Coastal Areas

  • Park, Soon-Young;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.198-210
    • /
    • 2010
  • Precise analysis of local winds for the prediction of atmospheric phenomena in the planetary boundary layer is extremely important. In this study, wind profiler data with fine time resolution and density in the lower troposphere were used to improve the performance of a numerical atmospheric model of a complex coastal area. Three-dimensional variational data assimilation (3DVAR) was used to assimilate profiler data. Two experiments were conducted to determine the effects of the profiler data on model results. First, we performed an observing system experiment. Second, we implemented a sensitivity test of data assimilation intervals to extend the advantages of the profiler to data assimilation. The lowest errors were observed when using both radio sonde and profiler data to interpret vertical and surface observation data. The sensitivity to the assimilation interval differed according to the synoptic conditions when the focus was on the surface results. The sensitivity to the weak synoptic effect was much larger than to the strong synoptic effect. The hourly-assimilated case showed the lowest root mean square error (RMSE, 1.62 m/s) and highest index of agreement (IOA, 0.82) under weak synoptic conditions, whereas the statistics in the 1, 3, and 6 hourly-assimilated cases were similar under strong synoptic conditions. This indicates that the profiler data better represent complex local circulation in the model with high time and vertical resolution, particularly when the synoptic effect is weak.

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques (III) - On the Method of LH-moments and GIS Techniques - (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정 (III) - LH-모멘트법과 GIS 기법을 중심으로 -)

  • 이순혁;박종화;류경식;지호근;신용희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.41-53
    • /
    • 2002
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. According to the regions and consecutive durations, optimal design rainfalls were derived by the regional frequency analysis for L-moment in the second report of this project. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized extreme value (GEV) distribution among applied distributions. regional and at-site parameters of the GEV distribution were estimated by the linear combination of the higher probability weighted moments, LH-moment. Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. Relative efficiency (RE) for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.