• 제목/요약/키워드: root-mean-square error

검색결과 1,242건 처리시간 0.036초

Soil Profile Measurement of Carbon Contents using a Probe-type VIS-NIR Spectrophotometer (프로브형 가시광-근적외선 센서를 이용한 토양의 탄소량 측정)

  • Kweon, Gi-Young;Lund, Eric;Maxton, Chase;Drummond, Paul;Jensen, Kyle
    • Journal of Biosystems Engineering
    • /
    • 제34권5호
    • /
    • pp.382-389
    • /
    • 2009
  • An in-situ probe-based spectrophotometer has been developed. This system used two spectrometers to measure soil reflectance spectra from 450 nm to 2200 nm. It collects soil electrical conductivity (EC) and insertion force measurements in addition to the optical data. Six fields in Kansas were mapped with the VIS-NIR (visible-near infrared) probe module and sampled for calibration and validation. Results showed that VIS-NIR correlated well with carbon in all six fields, with RPD (the ratio of standard deviation to root mean square error of prediction) of 1.8 or better, RMSE of 0.14 to 0.22%, and $R^2$ of 0.69 to 0.89. From the investigation of carbon variability within the soil profile and by tillage practice, the 0-5 cm depth in a no-till field contained significantly higher levels of carbon than any other locations. Using the selected calibration model with the soil NIR probe data, a soil profile map of estimated carbon was produced, and it was found that estimated carbon values are highly correlated to the lab values. The array of sensors (VIS-NIR, electrical conductivity, insertion force) used in the probe allowed estimating bulk density, and three of the six fields were satisfactory. The VIS-NIR probe also showed the obtained spectra data were well correlated with nitrogen for all fields with RPD scores of 1.84 or better and coefficient of determination ($R^2$) of 0.7 or higher.

Image Registration of Drone Images through Association Analysis of Linear Features (선형정보의 연관분석을 통한 드론영상의 영상등록)

  • Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제35권6호
    • /
    • pp.441-452
    • /
    • 2017
  • Drones are increasingly being used to investigate disaster damage because they can quickly capture images in the air. It is necessary to extract the damaged area by registering the drones and the existing ortho-images in order to investigate the disaster damage. In this process, we might be faced the problem of registering two images with different time and spatial resolution. In order to solve this problem, we propose a new methodology that performs initial image transformation using line pairs extracted from images and association matrix, and final registration of images using linear features to refine the initial transformed result. The applicability of the newly proposed methodology in this study was evaluated through experiments using artifacts and the natural terrain areas. Experimental results showed that the root mean square error of artifacts and the natural terrain was 1.29 pixels and 4.12 pixels, respectively, and relatively high accuracy was obtained in the region with artifacts extracted a lot of linear information.

Estimation of Coastal Suspended Sediment Concentration using Satellite Data and Oceanic In-Situ Measurements

  • Lee, Min-Sun;Park, Kyung-Ae;Chung, Jong-Yul;Ahn, Yu-Hwan;Moon, Jeong-Eun
    • Korean Journal of Remote Sensing
    • /
    • 제27권6호
    • /
    • pp.677-692
    • /
    • 2011
  • Suspended sediment is an important oceanic variable for monitoring changes in coastal environment related to physical and biogeochemical processes. In order to estimate suspended sediment concentration (SSC) from satellite data, we derived SSC coefficients by fitting satellite remote sensing reflectances to in-situ suspended sediment measurements. To collect in-situ suspended sediment, we conducted ship cruises at 16 different locations three times for the periods of Sep.-November 2009 and Jul. 2010 at the passing time of Landsat $ETM_+$. Satellite data and in-situ data measured by spectroradiometers were converted to remote sensing reflectances ($R_{rs}$). Statistical approaches proved that the exponential formula using a single band of $R_{rs}$(565) was the most appropriate equation for the estimation of SSC in this study. Satellite suspended sediment using the newly-derived coefficients showed a good agreement with insitu suspended sediment with an Root Mean Square (RMS) error of 1-3 g/$m^3$. Satellite-observed SSCs tended to be overestimated at shallow depths due to bottom reflection presumably. This implies that the satellite-based SSCs should be carefully understood at the shallow coastal regions. Nevertheless, the satellite-derived SSCs based on the derived SSC coefficients, for the most cases, reasonably coincided with the pattern of in-situ suspended sediment measurements in the study region.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • 제34권5호
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

An Improved Fractal Color Image Decoding Based on Data Dependence and Vector Distortion Measure (데이터 의존성과 벡터왜곡척도를 이용한 개선된 프랙탈 칼라영상 복호화)

  • 서호찬;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • 제2권3호
    • /
    • pp.289-296
    • /
    • 1999
  • In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.

  • PDF

Discrimination and Quantitative Analysis of Watercore in Apple Fruit by Near Infrared Transmittance Spectroscopy

  • Kim, Eun-Ok;Sohn, Mi-Ryeong;Kwon, Young-Kil;Lin, Gou-Lin;Cho, Rae-Kwang
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1529-1529
    • /
    • 2001
  • The watercore in apple is very important factor in storage and sorting of fruit. Most consumers tend to prefer the apple included watercore in immediately after harvest, however the watercore causes fruit flesh to brown during storage and lose the worth after all. But it is practically impossible to judge to the naked eye whether an apple has watercore or not. Therefore, the rapid, accurate and non-destructive analysis method for discrimination of watercore should be settled without delay. In this study we attempted the discrimination and quantitative analysis of watercore in apple fruit using near-infrared transmittance spectroscopy ‘Fuji’ apple fruits produced in Kyungpook of Korea was used in this experiment. The watercore content in apple was evaluated by graphic treatment of culled slice sections(10 mm). NIR transmittance spectra were collected over the 500 to 1000 nm spectral region with a spectrometer (Sentronic Co., Germany). The calibration models were carried out by partial least squares (PLS) analysis between NIR spectra data of apples and chemical data of watercore content. The spectra were different in absorbance between apple included watercore and not included one. Apple included watercore had higher absorption band than sample not included one at 732 and 820 nm. The calibration model seems to be accurate to predict the watercore content in apple fruit, the correlation coefficient (R) and root mean square error of prediction (RMSEP) were 0.99 and 0.93%, respectively. This result indicates that the PLSR calibration model by using NIR transmittance spectroscopy could be used for discrimination of watercore in apple fruit.

  • PDF

Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram (심전도 신호의 전력선 잡음 제거를 위한 Deep De-noising Network 설계)

  • Kwon, Oyun;Lee, JeeEun;Kwon, Jun Hwan;Lim, Seong Jun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • 제23권3호
    • /
    • pp.402-411
    • /
    • 2020
  • Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.

A Basic Study on Development of a Tracking Module for ARPA system for Use on High Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • 제40권2호
    • /
    • pp.83-87
    • /
    • 2016
  • The maritime industry is expanding at an alarming rate hence there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking module designed herein comprises determining existing states of high dynamic target warship, state prediction and state compensation due to random noise. This is achieved by first analyzing the process of tracking followed by design of a tracking algorithm that uses ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise. The algorithm involves initializing the state parameters which include position, velocity, acceleration and the course. This is then followed by state prediction at each time interval. A weighted difference of the observed and predicted state values at the $n^{th}$ observation is added to the predicted state to obtain the smoothed (filtered) state. This estimation is subsequently employed to determine the predicted state in the next radar scan. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from a pre-determined value of the damping parameter, ${\xi}$. The smoothed, predicted and the observed positions are used to compute the twice distance root mean square (2drms) error as a measure of the ability of the tracking module to manage the noise to acceptable levels.

Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System (수문학적 가뭄전망을 위한 GloSea5의 활용체계 구축 및 예측성 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo;Cheong, Hyun-Sook
    • Atmosphere
    • /
    • 제25권2호
    • /
    • pp.271-281
    • /
    • 2015
  • The objectives of this study are to develop a hydrological drought outlook system using GloSea5 (Global Seasonal forecasting system 5) which has recently been used by KMA (Korea Meteorological Association) and to evaluate the forecasting capability. For drought analysis, the bilinear interpolation method was applied to spatially downscale the low-resolution outputs of GloSea5 and PR (Predicted Runoff) was produced for different lead times (i.e., 1-, 2-, 3-month) running LSM (Land Surface Model). The behavior of PR anomaly was similar to that of HR (Historical Runoff) and the estimated values were negative up to lead times of 1- and 2-month. For the evaluation of drought outlook, SRI (Standardized Runoff Index) was selected and PR_SRI estimated using PR. ROC score was 0.83, 0.71, 0.60 for 1-, 2- and 3-month lead times, respectively. It also showed the hit rate is high and false alarm rate is low as shorter lead time. The temporal Correlation Coefficient (CC) was 0.82, 0.60, 0.31 and Root Mean Square Error (RMSE) was 0.52, 0.86, 1.20 for 1-, 2-, 3-month lead time, respectively. The accuracy of PR_SRI was high up to 1- and 2-month lead time on local regions except the Gyeonggi and Gangwon province. It can be concluded that GloSea5 has high applicability for hydrological drought outlook.

Accuracy of Short-Term Ocean Prediction and the Effect of Atmosphere-Ocean Coupling on KMA Global Seasonal Forecast System (GloSea5) During the Development of Ocean Stratification (기상청 계절예측시스템(GloSea5)의 해양성층 강화시기 단기 해양예측 정확도 및 대기-해양 접합효과)

  • Jeong, Yeong Yun;Moon, Il-Ju;Chang, Pil-Hun
    • Atmosphere
    • /
    • 제26권4호
    • /
    • pp.599-615
    • /
    • 2016
  • This study investigates the accuracy of short-term ocean predictions during the development of ocean stratification for the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 5 (GloSea5) as well as the effect of atmosphere-ocean coupling on the predictions through a series of sensitive numerical experiments. Model performance is evaluated using the marine meteorological buoys at seas around the Korean peninsular (KP), Tropical Atmosphere Ocean project (TAO) buoys over the tropical Pacific ocean, and ARGO floats data over the western North Pacific for boreal winter (February) and spring (May). Sensitive experiments are conducted using an ocean-atmosphere coupled model (i.e., GloSea5) and an uncoupled ocean model (Nucleus for European Modelling of the Ocean, NEMO) and their results are compared. The verification results revealed an overall good performance for the SST predictions over the tropical Pacific ocean and near the Korean marginal seas, in which the Root Mean Square Errors (RMSE) were $0.31{\sim}0.45^{\circ}C$ and $0.74{\sim}1.11^{\circ}C$ respectively, except oceanic front regions with large spatial and temporal SST variations (the maximum error reached up to $3^{\circ}C$). The sensitive numerical experiments showed that GloSea5 outperformed NEMO over the tropical Pacific in terms of bias and RMSE analysis, while NEMO outperformed GloSea5 near the KP regions. These results suggest that the atmosphere-ocean coupling substantially influences the short-term ocean forecast over the tropical Pacific, while other factors such as atmospheric forcing and the accuracy of simulated local current are more important than the coupling effect for the KP regions being far from tropics during the development of ocean stratification.