• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.027 seconds

Non-destructive quality prediction of truss tomatoes using hyperspectral reflectance imagery (초분광 영상을 이용한 송이토마토의 비파괴 품질 예측)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Kim, Young-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.413-420
    • /
    • 2012
  • Spectroscopic measurement method based on visible and near-infrared wavelengths was prominent technology for rapid and non-destructive evaluation of internal quality of fruits. Reflectance measurement was performed to evaluate firmness, soluble solid content, and acid content of truss tomatoes by hyperspectral reflectance imaging system. The Vis/NIR reflectance spectra was acquired from truss tomatoes sorted by 6 ripening stages. The multivariable analysis based on partial least square (PLS) was used to develop regression models with several preporcessing methods, such as smoothing, normalization, multiplicative scatter correction (MSC), and standard normal variate (SNV). The best model was selected in terms of coefficient of determination of calibration ($R_c^2$) and full cross validation ($R_{cv}^2$), and root mean standard error of calibration (RMSEC) and full cross validation (RMSECV). The results of selected models were 0.8976 ($R_p^2$), 6.0207 kgf (RMSEP) with gaussian filter of smoothing, 0.8379 ($R_p^2$), $0.2674^{\circ}Bx$ (RMSEP) with the mean of normalization, and 0.7779 ($R_p^2$), 0.1033% (RMSEP) with median filter of smoothing for firmness, soluble solid content (SSC), and acid content, respectively. Results show that Vis / NIR hyperspectral reflectance imaging technique has good potential for the measurement of internal quality of truss tomato.

An Imputation for Nonresponses in the Survey on the Rural Living Indicators (농촌생활지표조사에서 무응답 대체 : 사례)

  • Cho, Young-Sook;Chun, Young-Min;Hwang, Dae-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.95-107
    • /
    • 2008
  • Survey on the rural living indicators was the statistic approved from National Statistical Office and the survey executed by rural resources development institute. This study was used the raw data of survey on the rural living indicators in 2005. After editing procedure for raw data, we were studied 1,582 households which is acquired through elimination of case included nonresponses, and imputed a nonresponses of 15 item selected from 146 item. The imputation methods and efficiency of imputation for simulation was adapted differently from type of data. For continuous data, we imputed the nonresponses with mean imputation, regression imputation, adjusted grey-based k-NN imputation(DU, DW, WU, WW) and compared the results with RMSE. For categorical data, we imputed the nonresponses with mode method, probability imputation, conditional mode method, conditional probability method, hot-deck imputation, and compared the results with Accuracy. By the results, regression imputation and adjusted grey-based k-NN imputation appropriated for continuous data and hot-deck imputation appropriated for categorical data.

A Study on the Development of Operable Models Predicting Tomorrow′s Maximum Hourly Concentrations of Air Pollutants in Seoul (현업운영 가능한 서울지역의 일 최고 대기오염도 예보모델 개발 연구)

  • 김용준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 1997
  • In order to reduce the outbreaks of short-term high concentrations and its impacts, we developed the models which predicted tomorrow's maximum hourly concentrations of $O_3$, TSP, SO$_2$, NO$_2$ and CO. Statistical methods like multi regressions were used because it must be operated easily under the present conditions. 47 independent variables were used, which included observed concentrations of air pollutants, observed and forcasted meteorological data in 1994 at Seoul and its surrounding areas. We subdivided Seoul into 4 areas coinciding with the present ozone warning areas. 4 kinds of seasonal models were developed due to the seasonal variations of observed concentrations, and 2 kinds of data models for the unavailable case of forecasted meteorological data. By comparing the $R^2$and root mean square error(hearafter 'RMSE') of each model, we confirmed that the models including forecasted data showed higher accuracy than ones using observed only. It was also shown that the higher the seasonal mean concentrations, the larger the RMSE. There was no distinct difference between the results of 4 areal models. In case of test run using 1995's data, the models predicted well the trends of daily variation of concentrations and the days when the possibility of outbreak of high concentarion was high. This study showed that it was reasonable to use those models as operational ones, because the $R^2$ and RMSE of models were smaller than those of operational/research models such as in South Coast Air Basin, CA, USA.

  • PDF

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

Development of Estimation Algorithm of Near-Surface Air Temperature for Warm and Cold Seasons in Korea (온난 및 한랭시즌의 우리나라 지상기온 평가 알고리즘 개발)

  • Kim, Do Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.11-16
    • /
    • 2015
  • Spatial and temporal information on near-surface air temperature is important for understanding global warming and climate change. In this study, the estimation algorithm of near-surface air temperature in Korea was developed by using spatial homogeneous surface information obtained from satellite remote sensing observations. Based on LST(Land Surface Temperature), NDWI(Normalized Difference Water Index) and NDVI(Normalized Difference Vegetation Index) as independent variables, the multiple regression model was proposed for the estimation of near-surface air temperature. The different regression constants and coefficients for warm and cold seasons were calculated for considering regional climate change in Korea. The near-surface air temperature values estimated from the multiple regression algorithm showed reasonable performance for both warm and cold seasons with respect to observed values (approximately $3^{\circ}C$ root mean-square error and nearly zero mean bias). Thus;the proposed algorithm using remotely sensed surface observations and the approach based on the classified warm and cold seasons may be useful for assessment of regional climate temperature in Korea.

The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA (위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과)

  • Lee, Juwon;Lee, Seung-Woo;Han, Sang-Ok;Lee, Seung-Jae;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.

Validation and selection of GCPs obtained from ERS SAR and the SRTM DEM: Application to SPOT DEM Construction

  • Jung, Hyung-Sup;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.483-496
    • /
    • 2008
  • Qualified ground control points (GCPs) are required to construct a digital elevation model (DEM) from a pushbroom stereo pair. An inverse geolocation algorithm for extracting GCPs from ERS SAR data and the SRTM DEM was recently developed. However, not all GCPs established by this method are accurate enough for direct application to the geometric correction of pushbroom images such as SPOT, IRS, etc, and thus a method for selecting and removing inaccurate points from the sets of GCPs is needed. In this study, we propose a method for evaluating GCP accuracy and winnowing sets of GCPs through orientation modeling of pushbroom image and validate performance of this method using SPOT stereo pair of Daejon City. It has been found that the statistical distribution of GCP positional errors is approximately Gaussian without bias, and that the residual errors estimated by orientation modeling have a linear relationship with the positional errors. Inaccurate GCPs have large positional errors and can be iteratively eliminated by thresholding the residual errors. Forty-one GCPs were initially extracted for the test, with mean the positional error values of 25.6m, 2.5m and -6.1m in the X-, Y- and Z-directions, respectively, and standard deviations of 62.4m, 37.6m and 15.0m. Twenty-one GCPs were eliminated by the proposed method, resulting in the standard deviations of the positional errors of the 20 final GCPs being reduced to 13.9m, 8.5m and 7.5m in the X-, Y- and Z-directions, respectively. Orientation modeling of the SPOT stereo pair was performed using the 20 GCPs, and the model was checked against 15 map-based points. The root mean square errors (RMSEs) of the model were 10.4m, 7.1m and 12.1m in X-, Y- and Z-directions, respectively. A SPOT DEM with a 20m ground resolution was successfully constructed using a automatic matching procedure.

Comparison of Different Methods to Merge IRS-1C PAN and Landsat TM Data (IRS-1C PAN 데이터와 Landsat TM 데이터의 종합방법 비교분석)

  • 안기원;서두천
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.149-164
    • /
    • 1998
  • The main object of this study was to prove the effectiveness of different merging methods by using the high resolution IRS(Indian Remote Sensing Satellite)-1C panchromatic data and the multispectral Landsat TM data. The five methods used to merging the information contents of each of the satellite data were the intensity-hue-saturation(IHS), principal component analysis(PCA), high pass filter(HPF), ratio enhancement method and look-up-table(LUT) procedures. Two measures are used to evaluate the merging method. These measures include visual inspection and comparisons of the mean, standard deviation and root mean square error between merged image and original image data values of each band. The ratio enhancement method was well preserved the spectral characteristics of the data. From visual inspection, PCA method provide the best result, HPF next, ratio enhancement, IHS and LUT method the worst for the preservation of spatial resolution.

Simultaneous Spectrometric Determination of Caffeic Acid, Gallic Acid, and Quercetin in Some Aromatic Herbs, Using Chemometric Tools

  • Kachbi, Abdelmalek;Abdelfettah-Kara, Dalila;Benamor, Mohamed;Senhadji-Kebiche, Ounissa
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.4
    • /
    • pp.254-259
    • /
    • 2021
  • The purpose of this work is the development of a method for an effective, less expensive, rapid, and simultaneous determination of three phenolic compounds (caffeic acid, gallic acid, and quercetin) widely present in food resources and known for their antioxidant powers. The method relies on partial least squares (PLS) calibration of UV-visible spectroscopic data. This model was applied to simultaneously determine, the concentrations of caffeic acid (CA), gallic acid (GA), and quercetin (Q) in six herb infusion extracts: basil, chive, laurel, mint, parsley, and thyme. A wavelength range (250-400) nm, and an experimental calibration matrix with 21 samples of ternary mixtures composed of CA (6.0-21.0 mg/L), GA (10.0-35.2 mg/L), and Q (6.4-17.5 mg/L) were chosen. Spectroscopic data were mean-centered before calibration. Two latent variables were determined using the contiguous block cross-validation procedure after calculating the root mean square error cross-validation RMSECV. Other statistic parameters: RMSEP, R2, and Recovery (%) were used to determine the predictive ability of the model. The results obtained demonstrated that UV-visible spectrometry and PLS regression were successfully applied to simultaneously quantify the three phenolic compounds in synthetic ternary mixtures. Moreover, the concentrations of CA, GA and Q in herb infusion extracts were easily predicted and found to be 3.918-18.055, 9.014-23.825, and 9.040-13.350 mg/g of dry sample, respectively.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.