• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.03 seconds

Calibration of Timetable Parameters for Rail-Guided Systems

  • Zhao, Weiting;Martin, Ullrich;Cui, Yong;Kosters, Maureen
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In order to achieve a comprehensive utilization of railway networks, it is necessary to accurately assess the timetable indicators that effect the train operation. This paper describes the parameter calibration for two timetable indicators: scheduled running time and scheduled dwell time. For the scheduled running time, an existing model is employed and the single timetable parameter (percentage of minimum running time) in that model is optimized. For the scheduled dwell time, two intrinsic characteristics: the significance of stations and the average headway at each station are proposed firstly to form a new model, and the corresponding timetable parameters (the weight of the significance and the weight of the average headway) are calibrated subsequently. The Floyd Algorithm is used to obtain the connectivity among stations, which represents the significance of the stations. A case study is conducted in a light rail transportation system with 17 underground stations. The results of this research show that the optimal value of the scheduled running time parameter can be automatically determined, and the proposed model for the scheduled dwell time works well with a high coefficient of determination and low relative root mean square error through the leave-one-out validation.

Calculation of the Flood Runoff of the River with Imaging Equipments (영상장비를 활용한 하천의 홍수유출량 산정)

  • Kang, Bo-Seong;Yang, Sung-Kee;Jung, Woo-Yeol;Kim, Yong-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.585-594
    • /
    • 2014
  • This study Analyzed four of seven runoffs which had happened in 2012 in comparison with the runoffs shown in Kalesto data, using the fixed surface image velocimetry (FSIV) installed at Oedo stream, Jeju Island. As a result of identifying a runoff curve graph, it was analyzed that the flood runoffs calculated with two observation devices were almost equivalent. As the differences in peak flows were 10 $m^3/s$, 0.7 $m^3/s$ and 3 $m^3/s$, the very similar result values were calculated. Even though there were errors in RMSE(Root Mean Square Error) made by two observation devices according to the degree of the peak flow, the values of $R^2$ by flood event were 0.89, 0.87, 0.86 and 0.82, showing the result values almost close to 1. Therefore, there was a very high correlation in flood runoffs calculated with two observation devices. This research method was considered to be a very suitable method to measure unexpected flood runoffs which could happen in the island area such as Jeju island during bad weather.

Flood Runoff Calculation using Disaster Monitoring CCTV System (재난감시용 하천 CCTV를 활용한 홍수유출량 산정)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwonkyu;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.571-584
    • /
    • 2014
  • The present study aims to apply a surface image velocimetry(SIV) system to video images captured with CCTV and estimate the flood discharge. The CCTV was installed at the Hancheon Bridge of the Han Cheon in Jeju Island for disaster surveillance, and seven flood events occurred in 2012 were used. During the image analyses, input parameters, interrogation areas and searching areas were determined with proper calibration procedures. To check for accuracy and applicability of SIV, the velocities and flood discharges estimated by SIV were compared with the measured ones by an electromagnetic surface velocimeter, Kalisto. The comparison results showed fairly good agreements. The RMSE(Root Mean Square Error) values between two instruments showed a range of 4.13 and 14.2, and the determination coefficients reached 0.75 through 0.85. It means that the SIV could be used as a good alternative method for other traditional velocity measuring instruments in measuring flood discharges.

Nonlinear Identification of Electronic Brake Pedal Behavior Using Hybrid GMDH and Genetic Algorithm in Brake-By-Wire System

  • Bae, Junhyung;Lee, Seonghun;Shin, Dong-Hwan;Hong, Jaeseung;Lee, Jaeseong;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1292-1298
    • /
    • 2017
  • In this paper, we represent a nonlinear identification of electronic brake pedal behavior in the brake-by-wire (BBW) system based on hybrid group method of data handling (GMDH) and genetic algorithm (GA). A GMDH is a kind of multi-layer network with a structure that is determined through training and which can express nonlinear dynamics as a mathematical model. The GA is used in the GMDH, enabling each neuron to search for its optimal set of connections with the preceding layer. The results obtained with this hybrid approach were compared with different nonlinear system identification methods. The experimental results showed that the hybrid approach performs better than the other methods in terms of root mean square error (RMSE) and correlation coefficients. The hybrid GMDH/GA approach was effective for modeling and predicting the brake pedal system under random braking conditions.

An Improved Spin Echo Train De-noising Algorithm in NMRL

  • Liu, Feng;Ma, Shuangbao
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.941-947
    • /
    • 2018
  • Since the amplitudes of spin echo train in nuclear magnetic resonance logging (NMRL) are small and the signal to noise ratio (SNR) is also very low, this paper puts forward an improved de-noising algorithm based on wavelet transformation. The steps of this improved algorithm are designed and realized based on the characteristics of spin echo train in NMRL. To test this improved de-noising algorithm, a 32 points forward model of big porosity is build, the signal of spin echo sequence with adjustable SNR are generated by this forward model in an experiment, then the median filtering, wavelet hard threshold de-noising, wavelet soft threshold de-noising and the improved de-noising algorithm are compared to de-noising these signals, the filtering effects of these four algorithms are analyzed while the SNR and the root mean square error (RMSE) are also calculated out. The results of this experiment show that the improved de-noising algorithm can improve SNR from 10 to 27.57, which is very useful to enhance signal and de-nosing noise for spin echo train in NMRL.

Non-linear modelling to describe lactation curve in Gir crossbred cows

  • Bangar, Yogesh C.;Verma, Med Ram
    • Journal of Animal Science and Technology
    • /
    • v.59 no.2
    • /
    • pp.3.1-3.7
    • /
    • 2017
  • Background: The modelling of lactation curve provides guidelines in formulating farm managerial practices in dairy cows. The aim of the present study was to determine the suitable non-linear model which most accurately fitted to lactation curves of five lactations in 134 Gir crossbred cows reared in Research-CumDevelopment Project (RCDP) on Cattle farm, MPKV (Maharashtra). Four models viz. gamma-type function, quadratic model, mixed log function and Wilmink model were fitted to each lactation separately and then compared on the basis of goodness of fit measures viz. adjusted $R^2$, root mean square error (RMSE), Akaike's Informaion Criteria (AIC) and Bayesian Information Criteria (BIC). Results: In general, highest milk yield was observed in fourth lactation whereas it was lowest in first lactation. Among the models investigated, mixed log function and gamma-type function provided best fit of the lactation curve of first and remaining lactations, respectively. Quadratic model gave least fit to lactation curve in almost all lactations. Peak yield was observed as highest and lowest in fourth and first lactation, respectively. Further, first lactation showed highest persistency but relatively higher time to achieve peak yield than other lactations. Conclusion: Lactation curve modelling using gamma-type function may be helpful to setting the management strategies at farm level, however, modelling must be optimized regularly before implementing them to enhance productivity in Gir crossbred cows.

EVALUATION OF DATA QUALITY OF PERMANENT GPS STATIONS IN SOUTH KOREA

  • Park, Kwan-Dong;Kim, Ki-Nam;Lim, Hyung-Chul;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • As of September 2002, there are more than 60 operational permanent Global Positioning System (GPS) stations in South Korea. Their data are being used for a variety of purposes: geodynamics, geodesy, real-time navigation, atmospheric science, and geography. Especially, many of the sites are reference stations for DGPS (Differential GPS). However, there has been no comprehensive and qualitative analysis published to evaluate the data quality. In this study, we present preliminary results of our assessment of the permanent GPS sites in South Korea. We have analyzed the multi-path characteristics of each station using a quality-checking software package called TEQC. Another multipath analysis tool based on post-fit phase residuals was used to check the repeating patterns and the amount of the multipath at each site. The long-term stability of each station was analyzed using the root-mean-square (RMS) error of the estimated site positions for one year, which enabled us to evaluate the mount stability. In addition, the number of cycle slips at each site was derived by TEQC. Based on these series of tests, we compared the stability and data quality of permanent GPS stations in South Korea.

A Comparative Study of Unit Hydrograph Models for Flood Runoff Estimation for the Streamflow Stations in Namgang-Dam Watershed (남강댐유역 내 주요 하천관측지점의 홍수유출량 추정을 위한 단위도 모형 비교연구)

  • Kim, Sung-Min;Kim, Sung-Jae;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.65-74
    • /
    • 2012
  • In this study, three different unit hydrograph methods (NRCS, Snyder and Clark) in the HEC-HMS were compared to find better fit with the observed data in the Namgang-Dam watershed. The Sancheong, Shinan, and Changchon in Namgang-Dam watershed were selected as the study watersheds. The input data for HEC-HMS were calculated land use, digital elevation map, stream, and watershed map provided by WAter Management Information System (WAMIS). Sixty six storms from 2004 to 2011 were selected for model calibration and validation. Three unit hydrograph methods were compared with the observed data in terms of simulated runoff volume, and peak runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the peak runoff was 0.8295~0.9999 and root mean square error (RMSE) was 0.029~0.086 mm/day for calibration stages. In the model validation, $R^2$ for the peak runoff was 0.9061~0.9916 and RMSE was 0.030~0.088 mm/day which were more accurate than calibrated data. Analysis of variance showed that there was no significant difference among the three unit hydrograph methods.

Estimation of Annual Capacity of Small Hydro Power Using Agricultural Reservoirs (농업용저수지를 이용한 소수력의 연간발전량 추정)

  • Woo, Jae-Yeoul;Kim, Jin-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.1-7
    • /
    • 2010
  • This study was carried out to investigate the effect of hydro power factors (e.g., irrigation area, watershed area, active storage, gross head) on annual generation capacity and operation ratio for agricultural reservoirs in Chungbuk Province with active storage of over 1 million $m^3$. The annual generation capacity and operation ratio were estimated using HOMWRS (Hydrological Operation Model for Water Resources System) from last 10-year daily hydrological data. The correlation coefficients between annual generation capacity and the hydro power factors except gross head were high (over 0.87), but the correlation coefficients between operational rate and the factors were low (below 0.28). The optimum multiple regression equations of the annual generation capacity were expressed as the functions of watershed area, active storage, and gross head. Also, the simple regression equation of annual generation capacity was expressed as a function of watershed area. The average relative root-mean-square-error (RRMSE) between observed and estimated values by the optimum multiple regression equations was smaller than that by the simple regression equation, suggesting that the former has more accuracy than the latter.

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.