• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.036 seconds

Estimation of High Resolution Gridded Precipitation Using GIS and PRISM (GIS와 PRISM을 이용한 고해상도 격자형 강수량 추정)

  • Shin, Sung-Chul;Kim, Maeng-Ki;Suh, Myoung-Suk;Rha, Deuk-Kyun;Jang, Dong-Ho;Kim, Chan-Su;Lee, Woo-Seop;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.71-81
    • /
    • 2008
  • In this study, in order to estimate high resolution precipitation with monthly time scales, Parameter-elevation Regressions on Independent Slopes Model (PRISM) was modified and configured for Korean precipitation based on elevation, distance, topographic facet, and coastal proximity. Applying this statistical downscaling model to Korean precipitation for 5 years from 2001 to 2005, we have compiled monthly grid data with a horizontal resolution of 5-km and evaluated the model using bias, root mean square error (RMSE), and correlation coefficient between the observed and the estimated. Results show that bias, RMSE, and correlation coefficient of the estimated value have a range from 0.2% to 1.0%, 19.6% (June) to 43.9% (January), and 0.73 to 0.84, respectively, indicating that the modified Korean PRISM (K-PRISM) is reasonably worked by weighting factors, i.e., topographic effect and rain shadow effect.

Communication-Power Overhead Reduction Method Using Template-Based Linear Approximation in Lightweight ECG Measurement Embedded Device (경량화된 심전도 측정 임베디드 장비에서 템플릿 기반 직선근사화를 이용한 통신오버헤드 감소 기법)

  • Lee, Seungmin;Park, Kil-Houm;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.205-214
    • /
    • 2020
  • With the recent development of hardware and software technology, interest in the development of wearable devices is increasing. In particular, wearable devices require algorithms suitable for low-power and low-capacity embedded devices. Among them, there is an increasing demand for a signal compression algorithm that reduces communication overhead, in order to increase the efficiency of storage and transmission of electrocardiogram (ECG) signals requiring long-time measurement. Because normal beats occupy most of the signal with similar shapes, a high rate of signal compression is possible if normal beats are represented by a template. In this paper, we propose an algorithm for determining the normal beat template using the template cluster and Pearson similarity. Also, the template is expressed effectively as a few vertices through linear approximation algorithm. In experiment of Datum 234 of MIT-BIH arrhythmia database (MIT-BIH ADB) provided by Physionet, a compression ratio was 33.44:1, and an average distribution of root mean square error (RMSE) was 1.55%.

An Improved Multi-resolution image fusion framework using image enhancement technique

  • Jhee, Hojin;Jang, Chulhee;Jin, Sanghun;Hong, Yonghee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.69-77
    • /
    • 2017
  • This paper represents a novel framework for multi-scale image fusion. Multi-scale Kalman Smoothing (MKS) algorithm with quad-tree structure can provide a powerful multi-resolution image fusion scheme by employing Markov property. In general, such approach provides outstanding image fusion performance in terms of accuracy and efficiency, however, quad-tree based method is often limited to be applied in certain applications due to its stair-like covariance structure, resulting in unrealistic blocky artifacts at the fusion result where finest scale data are void or missed. To mitigate this structural artifact, in this paper, a new scheme of multi-scale fusion framework is proposed. By employing Super Resolution (SR) technique on MKS algorithm, fine resolved measurement is generated and blended through the tree structure such that missed detail information at data missing region in fine scale image is properly inferred and the blocky artifact can be successfully suppressed at fusion result. Simulation results show that the proposed method provides significantly improved fusion results in the senses of both Root Mean Square Error (RMSE) performance and visual improvement over conventional MKS algorithm.

Quality Enhancement of a Complex Holographic Display Using a Single Spatial Light Modulator and a Circular Grating

  • Bang, Le Thanh;Piao, Yan Ling;Kim, Jong Jae;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • This paper proposes an optical system for complex holographic display that enhances the quality of the reconstructed three-dimensional image. This work focuses on a new design for an optical system and the evaluation of the complex holographic display, using a single spatial light modulator (SLM) and a circular grating. The optical system is based on a 4-f system in which the imaginary and real information of the hologram is displayed on concentric rectangular areas of the SLM and circular grating. Thus, this method overcomes the lack of accuracy in the pixel positions between two window holograms in previous studies, and achieves a higher intensity of the real object points of the reconstructed hologram than the original phase-reconstructed hologram. The proposed method provides approximately 30% less NMRS (Normal Root Mean Square) error, compared to previous systems, which is verified by both simulation and optical experiment.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

New Speed Adjustment Factor for Analyzing Level of Service at Multi-Lane Highway (다차로도로의 서비스수준 분석을 위한 속도보정계수 개선에 관한 연구)

  • Kim, Wongil;Kang, Woneui;Noh, Chang-Gyun;Park, Bumjin
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.167-173
    • /
    • 2012
  • PURPOSES : This study is to develop speed correction factor for more realistic Level-of-Service(LOS) at multilane highway. METHODS : In this study, we compared speed difference the degree of speed reductions in actual multilane road conditions with speed reduction considering speed correction factor presented in highway capacity manual using statistical techniques. And also we presents new speed correction factor analyzing collected data at national highway No.1 (Goyang~Wolrung). RESULTS : The result of analyzing and comparing new suggested speed correction factor with speed correction factor in Korea Highway Capacity Manual (KHCM) shows RMSE (Root Mean Square Error) in new speed correction factor (RMSE 1.5) is much lower than existing speed correction factor (RMSE 13.4). New suggested speed correction can be used for analyzing Level-of-Service at multilane highway. And also we suggests improvements for analysis procedure in analyzing Level-of-Service at multilane highway CONCLUSIONS : As a result of comparing differences, we draw the causes that effect the differences in speed and suggest new speed correction factor that consider traffic volumes. It can be more rational because it uses speed correction factor which can consider more realistic traffic conditions, etc.

3-Dimensional Balancing Technique for Nationwide Travel Demand Model using Toll Collecting System Data (3-D 기법을 이용한 TCS기반 전국 교통수요 추정 연구)

  • 이승재;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.63-72
    • /
    • 2002
  • We applied 3-D balancing technique to estimate nationwide travel demand using travel behavior of Toll Collecting System data, socio-economic data in the region, and the data of several organizations connected with travel demand estimation. The results from this study were validated by the indices of RMSE(Root Mean Square Error), TLFD(Trip Length Frequency Distribution). TCS based inter-city average travel to measure of reliability and adequacy of estimated travel demand. Finally, 3-D technique seems to reflect more travel behavior of TCS OD than 2-D technique, but we cannot assert that 3-D technique superior to 2-D technique.

Operational Water Quality Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 수질 예측)

  • Shin, Chang Min;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.570-581
    • /
    • 2016
  • A watershed model was constructed using the Hydrological Simulation Program Fortran to predict the water quality, especially chlorophyll-a concentraion, at major tributaries of the Nakdong River basin, Korea. The BOD export loads for each land use in HSPF model were estimated at $1.47{\sim}8.64kg/km^2/day$; these values were similar to the domestic monitoring export loads. The T-N and T-P export loads were estimated at $0.618{\sim}3.942kg/km^2/day$ and $0.047{\sim}0.246kg/km^2/day$, slightly less than the domestic monitoring data but within the range of foreign literature values. The model was calibrated at major tributaries for a three-year period (2008 to 2010). The deviation values ranged from -31.5~1.6% of chlorophyll-a, -24.0~2.2% of T-N, and -5.7~34.8% of T-P. The root mean square error (RMSE) ranged from 4.3~44.4 ug/L for chlorophyll-a, -0.6~1.5 mg/L for T-N, and 0.04~0.18 mg/L for T-P, which indicates good calibration results. The operational water quality forecasting results for chlorophyll-a presented in this study were in good agreement with measured data and had an accuracy similar with model calibration results.

The Changes of Natural Microflora in Liver Sausage with Kimchi Powder during Storages

  • Kim, Hyoun-Wook;Lee, Na-Kyoung;Oh, Mi-Hwa;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.899-906
    • /
    • 2011
  • The objectives of this study were to apply the Baranyi model to predict the growth of natural microflora in liver sausage with added kimchi powder. Kimchi powder was added to the meat products at 0, 1, 2, and 3% levels. To determine and quantify the natural microflora in the meat products, total plate counts and counts of anaerobic bacteria and lactic acid bacteria were examined throughout the 28 d of storage. The obtained data were applied to the Baranyi growth model. The indices used for comparing predicted and observed data were $B_f$, $A_f$, root mean square error (RMSE), and $R^2$. Twelve predictive models were characterized by a high $R^2$ and small RMSE. The Baranyi model was useful in predicting natural microflora levels in these meat products with added kimchi powder during storage.

Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT (PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교)

  • Kim, Chul-Seung;Moon, Ki-Wook;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.