This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.
Recently, the interest in integrated underground geospatial information mapping (IUGIM) to ensure the safety of underground spaces and facilities has been increasing. Because IUGIM is used in the fields of underground space development and underground safety management, the up-to-dateness and accuracy of information are critical. In this study, IUGIM and field data were classified, and the accuracy of IUGIM was improved by spatial interpolation. A spatial interpolation technique was used to process borehole data in IUGIM, and a quantitative evaluation was performed with mean absolute error and root mean square error through the cross-validation of seven interpolation results according to the technique and model. From the cross-validation results, accuracy decreased in the order of nonuniform rational B-spline, Kriging, and inverse distance weighting. In the case of Kriging, the accuracy difference according to the variogram model was insignificant, and Kriging using the spherical variogram exhibited the best accuracy.
Purpose: This study was performed to develop a linear regression model using the pulp-to-tooth volume ratio (PTVR) ratio of the maxillary canine, assessed through cone-beam computed tomography (CBCT) images, to predict chronological age (CA) in Indonesian adults. Materials and Methods: A sample of 99 maxillary canines was collected from patients between 20 and 49.99 years old. These samples were obtained from CBCT scans taken at the Universitas Padjadjaran Dental Hospital in Indonesia between 2018 and 2022. Pulp volume (PV) and tooth volume (TV) were measured using ITK-SNAP, while PTVR was calculated from the PV/TV ratio. Using RStudio, a linear regression was performed to predict CA using PTVR. Additionally, correlation and observer agreement were assessed. Results: The PTVR method demonstrated excellent reproducibility, and a significant correlation was found between the PTVR of the maxillary canine and CA(r= -0.74, P<0.01). The linear regression analysis showed an R2 of 0.58, a root mean square error of 5.85, and a mean absolute error of 4.31. Conclusion: Linear regression using the PTVR can be effectively applied to predict CA in Indonesian adults between 20 and 49.99 years of age. As models of this type can be population-specific, recalibration for each population is encouraged. Additionally, future research should explore the use of other teeth, such as molars.
Jun-Hyuk, Yoo;Jwa-Kyoung, Sung;Deogratius, Luyima;Taek-Keun, Oh;Jaesung, Cho
Korean Journal of Agricultural Science
/
v.48
no.4
/
pp.891-897
/
2021
There is a need for a technology that can quickly and accurately analyze soil carbon contents. Existing soil carbon analysis methods are cumbersome in terms of professional manpower requirements, time, and cost. It is against this background that the present study leverages the soil physical properties of color and water content levels to develop a model capable of predicting the carbon content of soil sample. To predict the total carbon content of soil, the RGB values, water content of the soil, and lux levels were analyzed and used as statistical data. However, when R, G, and B with high correlations were all included in a multiple regression analysis as independent variables, a high level of multicollinearity was noted and G was thus excluded from the model. The estimates showed that the estimation coefficients for all independent variables were statistically significant at a significance level of 1%. The elastic values of R and B for the soil carbon content, which are of major interest in this study, were -2.90 and 1.47, respectively, showing that a 1% increase in the R value was correlated with a 2.90% decrease in the carbon content, whereas a 1% increase in the B value tallied with a 1.47% increase in the carbon content. Coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) methods were used for regression verification, and calibration samples showed higher accuracy than the validation samples in terms of R2 and MAPE.
Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.326-326
/
2021
장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.
Journal of the Korea Society of Computer and Information
/
v.28
no.7
/
pp.11-18
/
2023
In this paper, we evaluate deep learning time series forecasting models. Recent studies show that those models perform better than the traditional prediction model such as ARIMA. Among them, recurrent neural networks to store previous information in the hidden layer are one of the prediction models. In order to solve the gradient vanishing problem in the network, LSTM is used with small memory inside the recurrent neural network along with BI-LSTM in which the hidden layer is added in the reverse direction of the data flow. In this paper, we compared the performance of Informer by comparing with other models (LSTM, BI-LSTM, and Transformer) for real Nitrogen dioxide (NO2) data. In order to evaluate the accuracy of each method, mean square root error and mean absolute error between the real value and the predicted value were obtained. Consequently, Informer has improved prediction accuracy compared with other methods.
Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.141-141
/
2022
Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.
Journal of The Korean Society of Agricultural Engineers
/
v.66
no.3
/
pp.1-14
/
2024
Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon city was selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure from Motion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters which combined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especially for short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall, the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combination of Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed method in this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.
Purpose: This study aims to provide useful information to real estate investors by developing a profit determination model using artificial intelligence. The model analyzes the real estate markets of six selected cities from multiple perspectives, incorporating characteristics of the real estate market, economic indicators, and policies to determine potential profits. Methods: Data on real estate markets, economic indicators, and policies for five cities were collected and cleaned. The data was then normalized and split into training and testing sets. An AI model was developed using machine learning algorithms and trained with this data. The model was applied to the six cities, and its accuracy was evaluated using metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared by comparing predicted profits to actual outcomes. Results: The profit determination model was successfully applied to the real estate markets of six cities, showing high accuracy and predictability in profit forecasts. The study provided valuable insights for real estate investors, demonstrating the model's utility for informed investment decisions. Conclusion: The study identified areas for future improvement, suggesting the integration of diverse data sources and advanced machine learning techniques to enhance predictive capabilities.
Objectives The purpose of this study is to evaluate the effects of attachment security, social support and health-related burden in the prediction of psychological distress and the mediation effects of social support and health-related burden in relationship between attachment security and psychological distress. Methods Finally, 161 patients were included for the analysis. Chi-square test and independent samples t-test were used for comparing differences between depressive/anxious group and non-depressive/non-anxious group. For evaluating the relationship among attachment security, social support, psychological distress and health-related burden, structural equation modeling analysis were performed. Results 40.7% and 32.0% of the patients have significant depressive symptoms and anxiety symptoms, respectively. In the analysis for testing the differences between groups who have psychological distress and who have not, there were no significant differences of sociodemographic factors and medical characteristics between groups, except for association between depressive symptoms and type of surgery (p = 0.01). Contrary to sociodemographic and medical characteristics, there were significant differences of health-related burden and two coping resources (attachment security and social support) between groups (all p < 0.01), except for the support from medical team in between anxious group and non-anxious group (p = 0.20). In the structural equation model analysis (Model fit : chi-square/df ratio = 0.8, root mean square error of approximation = 0.000, comparative fit index = 1.000, non-normed fit index =0.991), attachment security and social support emerged as an important predictor of psychopathology. Conclusions Attachment security and social support are important factors affecting the psychological distress. We suggest that individual attachment style and the social support state must be considered to approach the newly diagnosed breast cancer patients with psychological distress.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.