• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.037 seconds

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.

Increasing the Reliability of Truck O-D Matrices Estimation in the Seoul Metropolitan Area (수도권 화물차량 기.종점자료 신뢰도 향상 방안)

  • Kim, Chae-Man;Kim, Rak-Gi;Jeong, Yong-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.145-154
    • /
    • 2009
  • The main goal of this paper is to develop a methodology for increasing the reliability of truck OD matrices in Seoul Metropolitan Area. We propose a Hybrid Method made up of five processes by using Non-Traffic Assignment and Gradient Method. A Hybrid Method and Gradient Method have applied for comparison and estimation in Seoul Metropolitan Area. Mean Error and Root Mean Square Error of a Hybrid Method present lower than Gradient Method. The findings of this paper show that the new truck OD matrices created by a Hybrid Method are more reliable than the existing truck OD matrices in the Seoul Metropolitan Area.

A Study for Applicability of Cokriging Techniques for Estimating the Real Transaction Price of Land (토지 실거래가격 추정을 위한 공동 크리깅기법의 적용가능성 연구)

  • Choi, Jin Ho;Kim, Bong Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • The need for estimating the real transaction price of land is increasing in order to build foundation for transparent land transaction and fair taxation. This study looked into the applicability of cokriging combining real transaction price of land, altitude and gradient for effective price estimation on the points where the real transaction does not take place in the course of using the real transaction price of land. The real transaction price of land have been estimated using the real transaction materials of Yeongcheon, Gyeongsangbuk-do from January 2012 to June 2014, and the results have been compared with the estimation results of ordinary kriging. As a result of analyzing the mean error and root mean square error (RMSE) of the estimated price and 2,575 verification points, it was found that compared to ordinary kriging, cokriging results were more effective in terms of the real transaction price estimation and actualization. The reason that cokriging is more effective in the real transaction price estimation is because it takes account of altitude and gradient which are the forces influencing the land value.

A study on Development of Artificial Neural Network (ANN) for Preliminary Design of Urban Deep Ex cavation and Tunnelling (도심지 지하굴착 및 터널시공 예비설계를 위한 인공신경망 개발에 관한 연구)

  • Yoo, Chungsik;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this paper development artificial neural networks (ANN) for preliminary design and prediction of urban tunnelling and deep excavation-induced ground settlement was presented. In order to form training and validation data sets for the ANN development, field design and measured data were collected for various tunnelling and deep-excavation sites. The field data were then used as a database for the ANN training. The developed ANN was validated against a testing set and the unused field data in terms of statistical parameters such as R2, RMSE, and MAE. The practical use of ANN was demonstrated by applying the developed ANN to hypothetical conditions. It was shown that the developed ANN can be effectively used as a tool for preliminary excavation design and ground settlement prediction for urban excavation problems.

Spatial Interpolation and Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam

  • Do, Khac Phong;Nguyen, Ba Tung;Nguyen, Xuan Thanh;Bui, Quang Hung;Tran, Nguyen Le;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Nguyen, Huy Lai;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.556-572
    • /
    • 2015
  • This paper presents the applications of spatial interpolation and assimilation methods for satellite and ground meteorological data, including temperature, relative humidity, and precipitation in regions of Vietnam. In this work, Universal Kriging is used for spatially interpolating ground data and its interpolated results are assimilated with corresponding satellite data to anticipate better gridded data. The input meteorological data was collected from 98 ground weather stations located all over Vietnam; whereas, the satellite data consists of the MODIS Atmospheric Profiles product (MOD07), the ASTER Global Digital Elevation Map (ASTER DEM), and the Tropical Rainfall Measuring Mission (TRMM) in six years. The outputs are gridded fields of temperature, relative humidity, and precipitation. The empirical results were evaluated by using the Root mean square error (RMSE) and the mean percent error (MPE), which illustrate that Universal Kriging interpolation obtains higher accuracy than other forms of Kriging; whereas, the assimilation for precipitation gradually reduces RMSE and significantly MPE. It also reveals that the accuracy of temperature and humidity when employing assimilation that is not significantly improved because of low MODIS retrieval due to cloud contamination.

Dental age estimation using the pulp-to-tooth ratio in canines by neural networks

  • Farhadian, Maryam;Salemi, Fatemeh;Saati, Samira;Nafisi, Nika
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • Purpose: It has been proposed that using new prediction methods, such as neural networks based on dental data, could improve age estimation. This study aimed to assess the possibility of exploiting neural networks for estimating age by means of the pulp-to-tooth ratio in canines as a non-destructive, non-expensive, and accurate method. In addition, the predictive performance of neural networks was compared with that of a linear regression model. Materials and Methods: Three hundred subjects whose age ranged from 14 to 60 years and were well distributed among various age groups were included in the study. Two statistical software programs, SPSS 21 (IBM Corp., Armonk, NY, USA) and R, were used for statistical analyses. Results: The results indicated that the neural network model generally performed better than the regression model for estimation of age with pulp-to-tooth ratio data. The prediction errors of the developed neural network model were acceptable, with a root mean square error (RMSE) of 4.40 years and a mean absolute error (MAE) of 4.12 years for the unseen dataset. The prediction errors of the regression model were higher than those of the neural network, with an RMSE of 10.26 years and a MAE of 8.17 years for the test dataset. Conclusion: The neural network method showed relatively acceptable performance, with an MAE of 4.12 years. The application of neural networks creates new opportunities to obtain more accurate estimations of age in forensic research.

Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables (고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용)

  • Jeong, Yeo min;Eum, Hyung-Il
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

Analyses of the Meteorological Characteristics over South Korea for Wind Power Applications Using KMAPP (고해상도 규모상세화 수치자료 산출체계를 이용한 남한의 풍력기상자원 특성 분석)

  • Yun, Jinah;Kim, Yeon-Hee;Choi, Hee-Wook
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • High-resolution wind resources maps (maps, here after) with spatial and temporal resolutions of 100 m and 3-hours, respectively, over South Korea have been produced and evaluated for the period from July 2016 to June 2017 using Korea Meteorological Administration (KMA) Post Processing (KMAPP). Evaluation of the 10 m- and 80 m-level wind speed in the new maps (KMAPP-Wind) and the 1.5 km-resolution KMA NWP model, Local Data Assimilation and Prediction System (LDAPS), shows that the new high-resolution maps improves of the LDAPS winds in estimating the 10m wind speed as the new data reduces the mean bias (MBE) and root-mean-square error (RMSE) by 33.3% and 14.3%, respectively. In particular, the result of evaluation of the wind at 80 m which is directly related with power turbine shows that the new maps has significantly smaller error compared to the LDAPS wind. Analyses of the new maps for the seasonal average, maximum wind speed, and the prevailing wind direction shows that the wind resources over South Korea are most abundant during winter, and that the prevailing wind direction is strongly affected by synoptic weather systems except over mountainous regions. Wind speed generally increases with altitude and the proximity to the coast. In conclusion, the evaluation results show that the new maps provides significantly more accurate wind speeds than the lower resolution NWP model output, especially over complex terrains, coastal areas, and the Jeju island where wind-energy resources are most abundant.

Comparative Study of the Supervised Learning Model for Rate of Penetration Prediction Using Drilling Efficiency Parameters (시추효율매개변수를 이용한 굴진율 예측 지도학습 모델 비교 연구)

  • Han, Dong-Kwon;Sung, Yu-Jeong;Yang, Yun-Jeong;Kwon, Sun-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1032-1038
    • /
    • 2021
  • Rate of penetration(ROP) is one of the important variables for maximizing the drilling performance. In order to maximize drilling efficiency, it is necessary to increase the drilling speed, and real-time ROP prediction is important so that the driller can identify problems during drilling. The ROP has a high correlation with the drillstring rotational speed, weight on bit, and flow rate. In this paper, the ROP was predicted using a data-driven supervised learning model trained from the drilling efficiency parameters. As a result of comparison through the performance evaluation metrics of the regression model, the root mean square error(RMSE) of the RF model was 4.20 and the mean absolute percentage error(MAPE) was 9.08%, confirming the best predictive performance. The proposed method can be used as a base model for ROP prediction when constructing a real-time drilling operation guide system.

Predicting a Queue Length Using a Deep Learning Model at Signalized Intersections (딥러닝 모형을 이용한 신호교차로 대기행렬길이 예측)

  • Na, Da-Hyuk;Lee, Sang-Soo;Cho, Keun-Min;Kim, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.26-36
    • /
    • 2021
  • In this study, a deep learning model for predicting the queue length was developed using the information collected from the image detector. Then, a multiple regression analysis model, a statistical technique, was derived and compared using two indices of mean absolute error(MAE) and root mean square error(RMSE). From the results of multiple regression analysis, time, day of the week, occupancy, and bus traffic were found to be statistically significant variables. Occupancy showed the most strong impact on the queue length among the variables. For the optimal deep learning model, 4 hidden layers and 6 lookback were determined, and MAE and RMSE were 6.34 and 8.99. As a result of evaluating the two models, the MAE of the multiple regression model and the deep learning model were 13.65 and 6.44, respectively, and the RMSE were 19.10 and 9.11, respectively. The deep learning model reduced the MAE by 52.8% and the RMSE by 52.3% compared to the multiple regression model.