• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.034 seconds

Probabilistic-based damage identification based on error functions with an autofocusing feature

  • Gorgin, Rahim;Ma, Yunlong;Wu, Zhanjun;Gao, Dongyue;Wang, Yishou
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1121-1137
    • /
    • 2015
  • This study presents probabilistic-based damage identification technique for highlighting damage in metallic structures. This technique utilizes distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. Diagnostic signals were used to define the scatter signals of different paths. The energy of scatter signals till different times were calculated by taking root mean square of the scatter signals. For each pair of parallel paths an error function based on the energy of scatter signals is introduced. The resultant error function then is used to estimate the probability of the presence of damage in the monitoring area. The presented method with an autofocusing feature is applied to aluminum plates for method verification. The results identified using both simulation and experimental Lamb wave signals at different central frequencies agreed well with the actual situations, demonstrating the potential of the presented algorithm for identification of damage in metallic structures. An obvious merit of the presented technique is that in addition to damages located inside the region between transducers; those who are outside this region can also be monitored without any interpretation of signals. This novelty qualifies this method for online structural health monitoring.

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

A Study on the Analysis and Estimation of the Construction Cost by Using Deep learning in the SMART Educational Facilities - Focused on Planning and Design Stage - (딥러닝을 이용한 스마트 교육시설 공사비 분석 및 예측 - 기획·설계단계를 중심으로 -)

  • Jung, Seung-Hyun;Gwon, Oh-Bin;Son, Jae-Ho
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2018
  • The purpose of this study is to predict more accurate construction costs and to support efficient decision making in the planning and design stages of smart education facilities. The higher the error in the projected cost, the more risk a project manager takes. If the manager can predict a more accurate construction cost in the early stages of a project, he/she can secure a decision period and support a more rational decision. During the planning and design stages, there is a limited amount of variables that can be selected for the estimating model. Moreover, since the number of completed smart schools is limited, there is little data. In this study, various artificial intelligence models were used to accurately predict the construction cost in the planning and design phase with limited variables and lack of performance data. A theoretical study on an artificial neural network and deep learning was carried out. As the artificial neural network has frequent problems of overfitting, it is found that there is a problem in practical application. In order to overcome the problem, this study suggests that the improved models of Deep Neural Network and Deep Belief Network are more effective in making accurate predictions. Deep Neural Network (DNN) and Deep Belief Network (DBN) models were constructed for the prediction of construction cost. Average Error Rate and Root Mean Square Error (RMSE) were calculated to compare the error and accuracy of those models. This study proposes a cost prediction model that can be used practically in the planning and design stages.

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

Adaptive State-of-Charge Estimation Method for an Aeronautical Lithium-ion Battery Pack Based on a Reduced Particle-unscented Kalman Filter

  • Wang, Shun-Li;Yu, Chun-Mei;Fernandez, Carlos;Chen, Ming-Jie;Li, Gui-Lin;Liu, Xiao-Han
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1127-1139
    • /
    • 2018
  • A reduced particle-unscented Kalman filter estimation method, along with a splice-equivalent circuit model, is proposed for the state-of-charge estimation of an aeronautical lithium-ion battery pack. The linearization treatment is not required in this method and only a few sigma data points are used, which reduce the computational requirement of state-of-charge estimation. This method also improves the estimation covariance properties by introducing the equilibrium parameter state of balance for the aeronautical lithium-ion battery pack. In addition, the estimation performance is validated by the experimental results. The proposed state-of-charge estimation method exhibits a root-mean-square error value of 1.42% and a mean error value of 4.96%. This method is insensitive to the parameter variation of the splice-equivalent circuit model, and thus, it plays an important role in the popularization and application of the aeronautical lithium-ion battery pack.

WRF Sensitivity Experiments on the Choice of Land Cover Data for an Event of Sea Breeze Over the Yeongdong Region (영동 지역 해풍 사례를 대상으로 수행한 지면 피복 자료에 따른 WRF 모델의 민감도 분석)

  • Ha, Won-Sil;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.373-389
    • /
    • 2011
  • This research focuses on the sensitivity of the WRF(Weather Research and Forecasting) Model according to three different land cover data(USGS(United States Geological Survey), MODIS(Moderate Resolution Imaging Spectroradiometer)30s+USGS, and KLC (Korea Land Cover)) for an event of sea breeze, occurred over the Gangwon Yeongdong region on 13 May 2009. Based on the observation, the easterly into Gangneung, due to the sea-breeze circulation, was identified between 1000 LST and 1640 LST. It did not reach beyond the Taebaek Mountain Range and thus the easterly was not observed near Daegwallyeong. On the other hand, the numerical simulations utilizing land cover data of USGS, MODIS30s+USGS, and KLC showed easterlies beyond the Taebaek Mountain Range up to Daegwallyeong. In addition, rather different penetration distances of each easterly, and different timings of beginning and ending of sea breeze were identified among the simulations. The Bias, MAE(Mean Absolute Error) and RMSE(Root Mean Square Error) of the wind from WRF simulation using MODIS30s+USGS land cover data were the least among the simulations particularly over Gangwon Yeongdong coastal area(Sokcho, Gangneung and Donghae), while those of the wind over the Gangwon Mountain area(Daegwallyeong and Jinbu) from the simulation using KLC land cover data were the least among them. The wind field over Gangwon Yeongdong coastal area from the simulation using USGS land cover data was rather poor among them.

Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels (얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측)

  • Choi, Gil Sik;Chang, Soon Heung;Jeong, Yong Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.953-963
    • /
    • 2015
  • There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

A Study on Accuracy of Meteorological Information for Low Altitude Aerospace around the Airport on the West Coast (서해안 인접공항의 저고도 항공기상 정확도 연구)

  • Cho, Young-Jin;Yoo, Kwang Eui
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • This study is to evaluate the accuracy of the meteorological information provided for the aircraft operating at low altitude. At first, it is necessary to identify crucial elements of weather information closely related to flight safety during low altitude flights. The study conducted a survey of pilots of low altitude aircraft, divided into pre-flight and in-flight phases, and reached an opinion that wind direction, wind speed, cloud coverage and ceiling and visibility are important items. Related to these items, we compared and calculated the accuracy of TAFs and METARs from Taean Airfield, Seosan Airport and Gunsan Airport because of their high number of domestic low-altitude flights. Accuracy analysis evaluated the accuracy of two numerical variables, Mean Absolute Error(MAE) and Root Mean Square Error(RMSE), and the cloud coverage which is categorical variable was calculated and compared by accuracy. For numeric variables, one-way ANOVA, which is a parameter-test, was approached to identify differences between actual forecast values and observations based on absolute errors for each item derived from the results of MAE and RMSE accuracy analyses. To determine the satisfaction of both normality assumptions and equivalence variability assumptions, the Shapiro-Wilk test was performed to verify that they do not have a normality distribution for numerical variables, and for the non-parametric test, Kruscal-Wallis test was conducted to determine whether or not they are satisfied.

Estimation of ultimate torque capacity of the SFRC beams using ANN

  • Engin, Serkan;Ozturk, Onur;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.939-956
    • /
    • 2015
  • In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.

Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique (심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델)

  • LEE, JAEYOON;PINEDA, ISRAEL TORRES;GIAP, VAN-TIEN;LEE, DONGKEUN;KIM, YOUNG SANG;AHN, KOOK YOUNG;LEE, YOUNG DUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.