• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.03 seconds

Acceptance Measure of Quality Improvement Information System among Long-term Care Workers: A Psychometric Assessment (장기요양인력의 질 향상 정보시스템 수용 측정도구: 신뢰타당도 평가)

  • Lee, Taehoon;Jung, Young-il;Kim, Hongsoo
    • Research in Community and Public Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.513-523
    • /
    • 2017
  • Purpose: We evaluated the psychometric properties of a questionnaire on the acceptance of the quality improvement information system (QIIS) among long-term care workers (mostly nurses). Methods: The questionnaire composes of 21 preliminary questions with 5 domains based on the Technology Acceptance Model and related literature reviews. We developed a prototype web-based comprehensive resident assessment system, and collected data from 126 subjects at 75 long-term care facilities and hospitals, who used the system and responded to the questionnaire. A priori factor structure was developed using an exploratory factor analysis and validated by a confirmatory factor analysis; its reliability was also evaluated. Results: A total of 16 items were yielded, and 5 factors were extracted from the explanatory factor analysis: Usage Intention, Perceived Usefulness, Perceived Ease of Use, Social Influence, and Innovative Characteristics. The five-factor structure model had a good fit (Tucker-Lewis index [TLI]=.976; comparative fit index [CFI]=.969; standardized root mean squared residual [SRMR]=.052; root mean square error of approximation [RMSEA]=.048), and the items were internally consistent(Cronbach's ${\alpha}=.91$). Conclusion: The questionnaire was valid and reliable to measure the technology acceptance of QIIS among long-term care workers, using the prototype.

A Predictive Model on Patient-Centered Care of Hospital Nurses in Korea (상급종합병원 간호사의 환자중심간호 예측모형)

  • Jeong, Hyun;Park, Myonghwa
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.2
    • /
    • pp.191-202
    • /
    • 2019
  • Purpose: Patient-centered care is a widely utilized concept in nursing and health care. However, the key components of patient-centered nursing have not yet been reported. Moreover, previous studies on patient-centered care have mostly focused on components of nursing rather than organizational factors. Therefore, a comprehensive understanding of influential factors of patient-centered care is required. Methods: The purpose of this study was to develop a theoretical model based on person-centered care theory, and the relevant literature and to test the developed model with covariance structure analysis in order to determine the causal paths among the variables. Results: The model fit indices for the hypothetical model were suitable for the recommended level (goodness of fit index=.87, standardized root mean residual=.01, root mean square error of approximation=.06, Tucker-Lewis index=.90, comparative fit index=.92, parsimonious normed fit index=.75). In this study, five of the six paths established in the initial hypothetical model were supported. The variables of teamwork, self-leadership, and empathy accounted for 56.4% of hospital nurses' patient-centered care. Among these, empathy was the strongest predictor of patient-centered care. Conclusion: These results suggest that it is necessary to use strategies to improve self-leadership and empathy. In addition to enhancing the personal factors of nurses, nursing organizations should strive for effective multidisciplinary cooperation with active support for patient-centered care and openness to change.

Teleworking Survey in Saudi Arabia: Reliability and Validity of Arabic Version of the Questionnaire

  • Heba Yaagoub, AlNujaidi;Mehwish, Hussain;Sama'a H., AlMubarak;Asma Saud, AlFayez;Demah Mansour, AlSalman;Atheer Khalid, AlSaif;Mona M., Al-Juwair
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.6
    • /
    • pp.578-585
    • /
    • 2022
  • Objectives: This study aimed to adapt the survey questionnaire designed by Moens et al. (2021) and determine the validity and reliability of the Arabic version of the survey in a sample of the Saudi population experiencing teleworking. Methods: The questionnaire includes 2 sections. The first consists of 13 items measuring the impact of extended telework during the coronavirus disease 2019 (COVID-19) crisis. The second section includes 6 items measuring the impact of the COVID-19 crisis on selfview of telework and digital meetings. The survey instrument was translated based on the guidelines for the cultural adaptation of self-administrated measures. Results: The reliability of the questionnaire responses was measured by Cronbach's alpha. The construct validity was checked through exploratory factor analysis followed by confirmatory factor analysis (CFA) to further assess the factor structure. CFA revealed that the model had excellent fit (root mean square error of approximation, 0.00; comparative fit index, 1.0; Tucker-Lewis index, 1; standardized root mean squared residual, 0.0). Conclusions: The Arabic version of the teleworking questionnaire had high reliability and good validity in assessing experiences and perceptions toward teleworking. While the validated survey examined perceptions and experiences during COVID-19, its use can be extended to capture experiences and perceptions during different crises.

Health-related quality of life in female patients with reumatoid arthritis: a structural equation model (여성 류마티스 관절염 환자의 건강관련 삶의 질 구조모형)

  • Bukyung Kim;Mi-Hae Sung
    • Women's Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Purpose: This study aimed to construct a structural equation model to explain and predict factors affecting the health-related quality of life (QoL) in female rheumatoid arthritis (RA) patients based on the health-related QoL model by Ferrans et al. (2005) and a literature review. Methods: Patients (N=243) who were either registered members of an internet cafe composed of patients with RA or rheumatology outpatients at two tertiary general hospitals in Busan, Korea, were recruited via convenience sampling. Data were collected from July 2 to September 9, 2021, and the survey was conducted using a web-based questionnaire. The data were analyzed by SPSS and AMOS 26.0. Results: The goodness-of-fit statistics of the final model exhibited good results (χ2/degree of freedom=2.68, Turker-Lewis index=.94, comparative fit index=.96, standardized root mean-squared residual=.04, root mean- square error of approximation=.08), and 11 out of 14 paths of the model were supported. The squared multiple correlation, which reflected the explanatory power of the environmental characteristics, symptoms, functional status, and perceived health status on health-related QoL, was 80%. In the hypothesis model, 10 paths had significant direct effects, 6 paths had significant indirect effects, and 12 paths had significant total (direct and indirect) effects. Conclusion: Considering that factors directly affecting the health-related QoL of female patients with RA were social support, symptoms (fatigue and depression), resilience, and perceived health status, and that resilience was the most influential factor, clinicians can encourage resilience. Hence, to improve the health-related QoL of female patients with RA, continuing management is necessary, using various intervention methods that focus on enhancing resilience from the early stage to the end of treatment for RA.

Volume Transport on the Texas-Louisiana Continental Shelf

  • Cho Kwang-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1998
  • Seasonal volume transport on the Texas-Louisiana continental shelf is investigated in terms of objectively fitted transport streamfunction fields based on the current meter data of the Texas­Louisiana Shelf Circulation and Transport Processes Study. Adopted here for the objective mapping is a method employing a two-dimensional truncated Fourier representation of the streamfunction over a domain, with the amplitudes determined by least square fit of the observation. The fitting was done with depth-averaged flow rather than depth-integrated flow to reduce the root-mean-square error. The fitting process filters out $11\%$ of the kinetic energy in the monthly mean transport fields. The shelf-wide pattern of streamfunction fields is similar to that of near-surface velocity fields over the region. The nearshore transport, about 0.1 to 0.3 Sv $(1 Sv= 10^6\;m^3/sec)$, is well correlated with the seasonal signal of along-shelf wind stress. The spring transport is weak compared to other seasons in the inner shelf region. The transport along the shelf break is large and variable. In the southwestern shelf break, transport amounts up to 4.7 Sv, which is associated with the activities of the encroaching of energetic anticyclonic eddies originated in Loop Current of the eastern Gulf of Mexico. The first empirical orthogonal function (EOF) of streamfunction variability contains $67.3\%$ of the variance and shows a simple, shelf-wide, along-shelf pattern of transport. The amplitude evolution of the first EOF is highly correlated (correlation coefficient: 0.88) with the evolution of the along-shelf wind stress. This provides strong evidence that the large portion of seasonal variation of the shelf transport is wind-forced. The second EOF contains $23.7\%$ of the variance and shows eddy activities at the southwestern shelf break. The correlation coefficient between the amplitudes of the second EOF and wind stress is 0.42. We assume that this mode is coupled a periodic inner shelf process with a non-periodic eddy process on the shelf break. The third EOF (accounting for $7.2\% of the variance) shows several cell structures near the shelf break associated with the variability of the Loop Current Eddies. The amplitude time series of the third EOF show little correlation with the along-shelf wind.

  • PDF

Turkish Version of the Perceived Future Decent Work Securement Scale: Validity and Reliability for Nursing Students

  • Oznur Ispir Demir;Betul Sonmez;Duygu Gul;Sergul Duygulu
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.332-339
    • /
    • 2023
  • Background: The aim of the study was to test the validity and reliability of the Perceived Future Decent Work Securement Scale for Turkish nursing students. Methods: A cross-sectional, methodological study design was used. The study was carried out at three nursing undergraduate programs in Turkey during the academic year of 2020-2021 with 336 senior nursing students. Language validity and content validity analyses were performed for the scale adaptation, followed by confirmatory factor analysis (CFA) for construct validity. The reliability of the scale was determined using the test-retest and Cronbach's alpha internal consistency coefficient. Results: The scale-content validity index score was 0.988. In CFA, all goodness-of-fit indices verified the acceptable fit of the model; its root mean square error of approximation was 0.076; the normed fit index was 0.909; the standardized mean square residual was 0.097; the relative fit index was 0.881; the goodness-of-fit index was 0.915; the adjusted goodness-of-fit index was 0.872 and χ2/df = 2.932. The overall reliability was α = 0.86. The item-total correlations of the scale were above the acceptable level, and the test-retest analysis had a high correlation. The access to healthcare (14.68, SD 3.53) obtained the highest average score, and the adequate compensation (8.52, SD 3.76) was the lowest rated by the senior nursing students. Conclusion: The Perceived Future Decent Work Securement Scale is a valid and reliable scale to assess nursing students' future decent work securement.

Blood Loss Prediction of Rats in Hemorrhagic Shock Using a Linear Regression Model (출혈성 쇼크를 일으킨 흰쥐에서 선형회귀 분석모델을 이용한 출혈량 추정)

  • Lee, Tak-Hyung;Lee, Ju-Hyung;Choi, Jae-Rim;Yang, Dong-In;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.56-61
    • /
    • 2010
  • Hemorrhagic shock is a common cause of death in the emergency department. The purpose of this study was to investigate the relationship between blood loss as a percent of the total estimated blood volume (% blood loss) and changes in several physiological parameters. The other goal was to achieve an accurate prediction of percent blood loss for hemorrhagic shock in rats using a linear regression model. We allocated 60 Sprague-Dawley rats into four groups: 0ml, 2ml, 2.5ml, 3 mL/100 g during 15 min. We analyzed the heart rate, systolic and diastolic blood pressure, respiration rate, and body temperature in relation to the percent blood loss. We generated a linear regression model predicting the percent blood loss using a randomly chosen 360 data set and the R-square value of the model was 0.80. Root mean square error of the tested 360 data set using the linear regression was 5.7%. Even though the linear regression model is not directly applicable to clinical situation, our method of predicting % blood loss could be helpful in determining the necessary fluid volume for resuscitation in the future.

How to utilize vegetation survey using drone image and image analysis software

  • Han, Yong-Gu;Jung, Se-Hoon;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.114-119
    • /
    • 2017
  • This study tried to analyze error range and resolution of drone images using a rotary wing by comparing them with field measurement results and to analyze stands patterns in actual vegetation map preparation by comparing drone images with aerial images provided by National Geographic Information Institute of Korea. A total of 11 ground control points (GCPs) were selected in the area, and coordinates of the points were identified. In the analysis of aerial images taken by a drone, error per pixel was analyzed to be 0.284 cm. Also, digital elevation model (DEM), digital surface model (DSM), and orthomosaic image were abstracted. When drone images were comparatively analyzed with coordinates of ground control points (GCPs), root mean square error (RMSE) was analyzed as 2.36, 1.37, and 5.15 m in the direction of X, Y, and Z. Because of this error, there were some differences in locations between images edited after field measurement and images edited without field measurement. Also, drone images taken in the stream and the forest and 51 and 25 cm resolution aerial images provided by the National Geographic Information Institute of Korea were compared to identify stands patterns. To have a standard to classify polygons according to each aerial image, image analysis software (eCognition) was used. As a result, it was analyzed that drone images made more precise polygons than 51 and 25 cm resolution images provided by the National Geographic Information Institute of Korea. Therefore, if we utilize drones appropriately according to characteristics of subject, we can have advantages in vegetation change survey and general monitoring survey as it can acquire detailed information and can take images continuously.

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry

  • Park, Tae-Jin;Lee, Woo-Kyun;Lee, Jong-Yeol;Hayashi, Masato;Tang, Yanhong;Kwak, Doo-Ahn;Kwak, Han-Bin;Kim, Moon-Il;Cui, Guishan;Nam, Ki-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.307-318
    • /
    • 2012
  • To understand forest structures, the Geoscience Laser Altimeter System (GLAS) instrument have been employed to measure and monitor forest canopy with feasibility of acquiring three dimensional canopy structure information. This study tried to examine the potential of GLAS dataset in measuring forest canopy structures, particularly maximum canopy height estimation. To estimate maximum canopy height using feasible GLAS dataset, we simply used difference between signal start and ground peak derived from Gaussian decomposition method. After estimation procedure, maximum canopy height was derived from airborne Light Detection and Ranging (LiDAR) data and it was applied to evaluate the accuracy of that of GLAS estimation. In addition, several influences, such as topographical and biophysical factors, were analyzed and discussed to explain error sources of direct maximum canopy height estimation using GLAS data. In the result of estimation using direct method, a root mean square error (RMSE) was estimated at 8.15 m. The estimation tended to be overestimated when comparing to derivations of airborne LiDAR. According to the result of error occurrences analysis, we need to consider these error sources, particularly terrain slope within GLAS footprint, and to apply statistical regression approach based on various parameters from a Gaussian decomposition for accurate and reliable maximum canopy height estimation.