This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.
In this study, the artificial neural network (ANN) method was used for estimating the monthly mean wind speed of Sivas, in the central part of Turkey. Eighteen years of wind speed data obtained from nine measurement stations during the period of 2000-2017 at 10 m height was used for ANN analysis. It was found that mean absolute percentage error (MAPE) ranged from 3.928 to 6.662, mean bias error (MBE) ranged from -0.089 to -0.003, while root mean square error (RMSE) ranged from 0.050 to 0.157 and R2 ranged from 0.86 to 0.966. ANN models provide a good approximation of the wind speed for all measurement stations, however, a tendency to underestimate is also obvious.
Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.
This study was conducted to investigate the variation in nutrient composition of oilseed meals and to develop prediction equations for amino acid concentrations. Energy and nutrient contents were determined in a total of 1,380 feed ingredient samples including copra byproducts, corn distillers, dried grains with solubles, palm kernel byproducts, and soybean meal. The ingredient samples were imported to the Republic of Korea between 2006 and 2015. Data were analyzed using the MIXED procedure of SAS. The regression procedure of SAS was used to generate the prediction equation for the lysine concentration using the crude protein (CP) concentration as an independent variable. The concentrations of moisture, gross energy, CP, ether extract, crude fiber, ash, calcium, phosphorus, lysine, methionine, cysteine, and threonine in tested oilseed meals differed (P<0.05) depending on producing countries. The prediction equations for amino acid concentrations (% as-is basis) in the oilseed meals are: lysine = -1.08 + 0.080 × CP (root mean square error = 0.244, R2 = 0.924, and P<0.001); threonine = -0.297 + 0.044 × CP (root mean square error = 0.099, R2 = 0.958, and P<0.001). In conclusion, energy and nutrient compositions vary in the oilseed meals depending on the producing countries. Moreover, the crude protein concentration can be used as a suitable independent variable for estimating lysine and threonine concentrations in the oilseed meals.
Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwon-Kyu;Kim, Dong-Su
Journal of Environmental Science International
/
v.22
no.5
/
pp.581-589
/
2013
Surface Image Velocimetry(SIV) is an instrument to measure water surface velocity by using image processing techniques. Since SIV is a non-contact type measurement method, it is very effective and useful to measure water surface velocity for steep mountainous streams, such as streams in Jeju island. In the present study, a surface imaging velocimetry system was used to calculate the flow rate for flood event due to a typhoon. At the same time, two types of electromagnetic surface velocimetries (electromagnetic surface current meter and Kalesto) were used to observe flow velocities and compare the accuracies of each instrument. The comparison showed that for velocity distributions root mean square error(RMSE) was 0.33 and R-squared was 0.72. For discharge measurements, root mean square error(RMSE) reached 6.04 and R-squared did 0.92. It means that surface image velocimetry could be used as an alternative method for electromagnetic surface velocimetries in measuring flood discharge.
This paper described the method and the result of making a dynamic fiber optic gyrocompass measuring the heading angles of ships by processing the output signal from a constant rotating fiber optic sensor and also showed the measurement to test the performance of our system. Considerig an economical view we designed and ordered a cheap medium grade fiber densors increased not fiber length but the diameter of a fiber sensing loop. The scale factor and noise was 267mV/deg/s and 2 deg/hr/$\sqrt{Hz}(1{\sigma})$, respectively. We made the dynamic fiber optic gyrocompass by this sensor. We measured the heading angles in an arbitrary direction to evaluate the accuracy of our system and the root mean square error was $0.4^\circ$. Moreover, we measured the angles ineach direction of $45^\circ$. successive rotation to know whether this system has distoritions in a specific direction or not and the root mean square error in this case was $0.5^\circ$.
The Journal of Korean Institute of Communications and Information Sciences
/
v.23
no.6
/
pp.1471-1481
/
1998
In this paper, we propose a new digital image stabilization scheme based on the bit-plane matching. In the proposed algorithm, the conventional motion estimation algorithms are applied to the binary images extracted from the bit-plane images. It is shown that the computational complexity of the proposed algorithm can be significantly reduced by replacing the arithmetic calculations with the binary Boolean functions, while the accuracy of motion estimation is maintained. Furthermore, an adaptive algorithm for selecting a bit-plane in consideration of changes in external illumination can provide the robustness of the proposed algorithm. We compared the proposed algorithm with existing algorithms using root mean square error (RMSE) on the basis of the brute-force method, and proved experimentally that the proposed method detects the camera motion more accurately than existing algorithms. In addition, the proposed algorithm performs digital image stabilization with less computation.
Previous shape sensors including bend sensors and optic fiber based sensors are widely used in various applications including goniometer and surgical robots. But theses sensors have large nonlinearity, limited in the range of sensing curvature, and sometimes are expensive. This study suggests a new concept of bend sensor using cable-conduit which consists of the outer sheath and the inner wire. The outer sheath is made of helical coil whose length of the central line changes as the sheath bends. This length change of the central line can be measured with the length change of the inner cable. The modeling and the experimental results show that the output signal of the proposed sensor is linearly related with the bend angle of the sheath with root mean square error of 5.3% of $450^{\circ}$ sensing range. Also the polynomial calibration of the sensor can decrease the root mean square error to 2.1% of the full sensing range.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.301-301
/
2016
국내의 경우 수공구조물을 설계하기 위해서는 빈도해석을 통해 설계수문량을 산정한다. 일반적으로 실무에서는 지점빈도해석을 수행하게 되는데 설계빈도보다 대부분 짧은 기간의 자료를 이용하여 산정한다. 지역빈도해석은 이러한 자료기간이 가지는 문제점을 극복하기 위하여 확률수문량의 정확도와 신뢰도를 향상시키는 기법이다. 스케일 모델은 지속기간별로 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 표현이 가능하며, 이를 통해 강우의 IDF곡선을 제시할 수 있는 수학적 모델이다. 대상지역의 강우관측소에서 관측된 강우자료가 일단위이면, 기준지속기간이 24시간이 되며, 기준지속기간에 대한 확률강우량으로부터 임의의 지속기간에 대한 확률강우량을 스케일 모델을 이용하여 추정할 수 있다. 따라서 짧은 자료를 보유한 지역이거나 미계측 지역에 대한 확률강우량을 추정을 위해 지역빈도해석과 지역 스케일 모델을 이용하여 확률강우량을 추정하여 지점빈도해석과 비교하고자 한다. 본 연구를 위해 한강유역의 강우 관측소를 이용하였으며, 군집분석 중 k-means방법을 적용하여 수문학적 동질성을 확보한 후 지역을 구분하였다. 구분된 지역은 지점 및 지역빈도해석을 수행한 후 상대평균제곱근오차(relative root mean square error, RRMSE)를 비교하여 정확도를 판단하였고, 정확도가 높은 빈도해석에 지역 스케일 모델을 적용하여 미계측 지점에 대한 임의의 시간에 대한 확률강우량을 추정하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.