• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.025 seconds

Median Modified Wiener Filter for Noise Reduction in Computed Tomographic Image using Simulated Male Adult Human Phantom (시뮬레이션된 성인 남성 인체모형 팬텀을 이용한 전산화단층촬영 에서의 노이즈 제거를 위한 Median Modified Wiener 필터)

  • Ju, Sunguk;An, Byungheon;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Computed tomography (CT) has the problem of having more radiation exposure compared to other radiographic apparatus. There is a low-dose imaging technique for reducing exposure, but it has a disadvantage of increasing noise in the image. To compensate for this, various noise reduction algorithms have been developed that improve image quality while reducing the exposure dose of patients, of which the median modified Wiener filter (MMWF) algorithm that can be effectively applied to CT devices with excellent time resolution has been presented. The purpose of this study is to optimize the mask size of MMWF algorithm and to see the excellence of noise reduction of MMWF algorithm for existing algorithms. After applying the MMWF algorithm with each mask sizes set from the MASH phantom abdominal images acquired using the MATLAB program, which includes Gaussian noise added, and compared the values of root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC), and universal image quality index (UQI). The results showed that RMSE value was the lowest and PSNR, CC and UQI values were the highest in the 5 x 5 mask size. In addition, comparing Gaussian filter, median filter, Wiener filter, and MMWF with RMSE, PSNR, CC, and UQI by applying the optimized mask size. As a result, the most improved RMSE, PSNR, CC, and UQI values were showed in MMWF algorithms.

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.

Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products (Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가)

  • Park, SeongWook;Kim, MinSik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.463-473
    • /
    • 2021
  • Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model (유역모델을 이용한 농업용수 신속회귀수량 산정 연구)

  • Lee, Jiwan;Jung, Chunggil;Kim, Daye;Maeng, Seungjin;Jeong, Hyunsik;Jo, Youngsik;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.321-331
    • /
    • 2022
  • In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps (정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.363-369
    • /
    • 2021
  • High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.

Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning (기계학습 기반의 산불위험 중기예보 모델 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Kang, Yoojin;Kwon, Chungeun;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.781-791
    • /
    • 2022
  • It is crucial to provide forest fire risk forecast information to minimize forest fire-related losses. In this research, forecast models of forest fire risk at a mid-range (with lead times up to 7 days) scale were developed considering past, present and future conditions (i.e., forest fire risk, drought, and weather) through random forest machine learning over South Korea. The models were developed using weather forecast data from the Global Data Assessment and Prediction System, historical and current Fire Risk Index (FRI) information, and environmental factors (i.e., elevation, forest fire hazard index, and drought index). Three schemes were examined: scheme 1 using historical values of FRI and drought index, scheme 2 using historical values of FRI only, and scheme 3 using the temporal patterns of FRI and drought index. The models showed high accuracy (Pearson correlation coefficient >0.8, relative root mean square error <10%), regardless of the lead times, resulting in a good agreement with actual forest fire events. The use of the historical FRI itself as an input variable rather than the trend of the historical FRI produced more accurate results, regardless of the drought index used.

Machine-learning Approaches with Multi-temporal Remotely Sensed Data for Estimation of Forest Biomass and Forest Reference Emission Levels (시계열 위성영상과 머신러닝 기법을 이용한 산림 바이오매스 및 배출기준선 추정)

  • Yong-Kyu, Lee;Jung-Soo, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.603-612
    • /
    • 2022
  • The study aims were to evaluate a machine-learning, algorithm-based, forest biomass-estimation model to estimate subnational forest biomass and to comparatively analyze REDD+ forest reference emission levels. Time-series Landsat satellite imagery and ESA Biomass Climate Change Initiative information were used to build a machine-learning-based biomass estimation model. The k-nearest neighbors algorithm (kNN), which is a non-parametric learning model, and the tree-based random forest (RF) model were applied to the machine-learning algorithm, and the estimated biomasses were compared with the forest reference emission levels (FREL) data, which was provided by the Paraguayan government. The root mean square error (RMSE), which was the optimum parameter of the kNN model, was 35.9, and the RMSE of the RF model was lower at 34.41, showing that the RF model was superior. As a result of separately using the FREL, kNN, and RF methods to set the reference emission levels, the gradient was set to approximately -33,000 tons, -253,000 tons, and -92,000 tons, respectively. These results showed that the machine learning-based estimation model was more suitable than the existing methods for setting reference emission levels.

Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis (시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측)

  • Woo, Joung Woon;Kim, Yeon Joong;Yoon, Jong Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.128-134
    • /
    • 2022
  • Nakdong river estuary is being operated with the goal of expanding the period of seawater inflow from this year to 2022 every month and creating a brackish water area within 15 km of the upstream of the river bank. In this study, the deep learning algorithm Long Short-Term Memory (LSTM) was applied to predict the salinity of the Nakdong Bridge (about 5 km upstream of the river bank) for the purpose of rapid decision making for the target brackish water zone and prevention of salt water damage. Input data were constructed to reflect the temporal and spatial characteristics of the Nakdong River estuary, such as the amount of discharge from Changnyeong and Hamanbo, and an optimal model was constructed in consideration of the hydraulic characteristics of the Nakdong River Estuary by changing the degree according to the sequence length. For prediction accuracy, statistical analysis was performed using the coefficient of determination (R-squred) and RMSE (root mean square error). When the sequence length was 12, the R-squred 0.997 and RMSE 0.122 were the highest, and the prior prediction time showed a high degree of R-squred 0.93 or more until the 12-hour interval.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.