• Title/Summary/Keyword: root-mean-square error

Search Result 1,256, Processing Time 0.026 seconds

Development of Image Reconstruction Algorithm for Chest Digital Tomosynthesis System (CDT) and Evaluation of Dose and Image Quality (흉부 디지털 단층영상합성 시스템의 영상 재구성 알고리즘 개발 및 선량과 화질 평가)

  • Kim, Min Kyoung;Kwak, Hyeng Ju;Kim, Jong Hun;Choe, Won-Ho;Ha, Yun Kyung;Lee, So Jung;Kim, Dae Ho;Lee, Yong-Gu;Lee, Youngjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.143-147
    • /
    • 2016
  • Recently, digital tomosynthesis system (DTS) has been developed to reduce overlap using conventional X-ray and to overcome high patient dose problem using computed tomography (CT). The purpose of this study was to develop image reconstruction algorithm and to evaluate image characteristics and dose with chest digital tomosynthesis (CDT) system. Image reconstruction was used for filtered back-projection (FBP) methods and system geometry was constructed ${\pm}10^{\circ}$, ${\pm}15^{\circ}$, ${\pm}20^{\circ}$, and ${\pm}30^{\circ}$ angular range for acquiring phantom images. Image characteristics carried out root mean square error (RMSE) and signal difference-to-noise ratio (SDNR), and dose is evaluated effective dose with ${\pm}20^{\circ}$ angular range. According to the results, the phantom image with slice thickness filter has superb RMSE and SDNR, and effective dose was 0.166 mSv. In conclusion, we demonstrated usefulness of developed CDT image reconstruction algorithm and we constructed CDT basic output data with measuring effective dose.

Correlations Between the Physical Properties and Compression Index of KwangYang Clay (광양점토의 물리적 특성과 압축지수의 상관성)

  • Bae, Wooseok;Kim, Jongwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • The correlation equation empirically proposed to obtain compression indexes has been proposed to conveniently obtain the value using the soil parameter that can be obtained through simple tests when the number of time of consolidation testing is low or the distribution is large but most of the analyzed regions are limited to certain regions abroad or in the country and multiple data were integrated for use in many cases, thus it is not very reasonable to apply it. Therefore, to establish a new design method considering the uncertainty of the ground, it was selected the Kwangyang port area of which the data have been collected recently thus are relatively more reliable as the subject region of the study in order to maximally reduce the uncertainty of test data. After performing the verification of the normality of the consolidation test data obtained from the selected region and the transformation of variables, a prediction formula was proposed through the regression model with the transformed variables and the proposed regression model with transformed variables was compared with existing empirical equations to verify the suitability of the proposed model formula. After analyzing, it was confirmed that the coefficient of determination was increased after the Box-Cox variable transformation, thus the explanatory power was being enhanced and through the root-mean-square-error method, it was confirmed that the proposed model formula showed the most closed value to the test value.

  • PDF

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

Bivariate regional frequency analysis of extreme rainfalls in Korea (이변량 지역빈도해석을 이용한 우리나라 극한 강우 분석)

  • Shin, Ju-Young;Jeong, Changsam;Ahn, Hyunjun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.747-759
    • /
    • 2018
  • Multivariate regional frequency analysis has advantages of regional and multivariate framework as adopting a large number of regional dataset and modeling phenomena that cannot be considered in the univariate frequency analysis. To the best of our knowledge, the multivariate regional frequency analysis has not been employed for hydrological variables in South Korea. Applicability of the multivariate regional frequency analysis should be investigated for the hydrological variable in South Korea in order to improve our capacity to model the hydrological variables. The current study focused on estimating parameters of regional copula and regional marginal models, selecting the most appropriate distribution models, and estimating regional multivariate growth curve in the multivariate regional frequency analysis. Annual maximum rainfall and duration data observed at 71 stations were used for the analysis. The results of the current study indicate that Frank and Gumbel copula models were selected as the most appropriate regional copula models for the employed regions. Several distributions, e.g. Gumbel and log-normal, were the representative regional marginal models. Based on relative root mean square error of the quantile growth curves, the multivariate regional frequency analysis provided more stable and accurate quantiles than the multivariate at-site frequency analysis, especially for long return periods. Application of regional frequency analysis in bivariate rainfall-duration analysis can provide more stable quantile estimation for hydraulic infrastructure design criteria and accurate modelling of rainfall-duration relationship.

Accuracy Analysis of Medium Format CCD Camera RCD105 (중형카메라 RCD105 정확도 분석)

  • Kim, Tae-Hoon;Won, Jae-Ho;Kim, Chung-Pyeong;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying are used to build geography information such as digital ortho photo map and DEM(Digital Elevation Model). In this study, 3D position accuracy is compared medium format CCD camera RCD105 with airborne digital camera DMC. For this, test area was decided for aerial photograph. And using 1/1,000 scale digital map, ground control points were selected for aerial triangulation and check points were selected for horizontal/vertical accuracy analysis using softcopy stereoplotter. Accuracy of RCD105 and DMC was estimated by result of aerial triangulation and result of check points measurement of using softcopy stereoplotter. In result of aerial triangulation, RMSE(Root Mean Square Error) X, Y, Z of RCD105 is 2.1, 2.2, 1.3 times larger than DMC. In result of check point measurement using softcopy stereoplotter, horizontal/ vertical RMSE of RCD105 is 2.5, 4.3 times larger than DMC. Even though accuracy of RCD105 is lower than DMC, it is maybe possible to make digital map and ortho photo using RCD105.

Elevation Correction of Multi-Temporal Digital Elevation Model based on Unmanned Aerial Vehicle Images over Agricultural Area (농경지 지역 무인항공기 영상 기반 시계열 수치표고모델 표고 보정)

  • Kim, Taeheon;Park, Jueon;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, we propose an approach for calibrating the elevation of a DEM (Digital Elevation Model), one of the key data in realizing unmanned aerial vehicle image-based precision agriculture. First of all, radiometric correction is performed on the orthophoto, and then ExG (Excess Green) is generated. The non-vegetation area is extracted based on the threshold value estimated by applying the Otsu method to ExG. Subsequently, the elevation of the DEM corresponding to the location of the non-vegetation area is extracted as EIFs (Elevation Invariant Features), which is data for elevation correction. The normalized Z-score is estimated based on the difference between the extracted EIFs to eliminate the outliers. Then, by constructing a linear regression model and correcting the elevation of the DEM, high-quality DEM is produced without GCPs (Ground Control Points). To verify the proposed method using a total of 10 DEMs, the maximum/minimum value, average/standard deviation before and after elevation correction were compared and analyzed. In addition, as a result of estimating the RMSE (Root Mean Square Error) by selecting the checkpoints, an average RMSE was derivsed as 0.35m. Comprehensively, it was confirmed that a high-quality DEM could be produced without GCPs.

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network (순환인공신경망을 활용한 터널굴착면 전방 Q값 예측에 관한 연구)

  • Hong, Chang-Ho;Kim, Jin;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.239-248
    • /
    • 2020
  • Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.