• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.03 seconds

Product Life Cycle Based Service Demand Forecasting Using Self-Organizing Map (SOM을 이용한 제품수명주기 기반 서비스 수요예측)

  • Chang, Nam-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.37-51
    • /
    • 2009
  • One of the critical issues in the management of manufacturing companies is the efficient process of planning and operating service resources such as human, parts, and facilities, and it begins with the accurate service demand forecasting. In this research, service and sales data from the LCD monitor manufacturer is considered for an empirical study on Product Life Cycle (PLC) based service demand forecasting. The proposed PLC forecasting approach consists of four steps : understanding the basic statistics of data, clustering models using a self-organizing map, developing respective forecasting models for each segment, comparing the accuracy performance. Empirical experiments show that the PLC approach outperformed the traditional approaches in terms of root mean square error and mean absolute percentage error.

  • PDF

Global Hourly Solar Irradiation Estimation using Cloud Cover and Sunshine Duration in South Korea (운량 및 일조시간을 이용한 우리나라의 시간당 전일사량의 평가)

  • Lee, Kwan-Ho
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. For the six locations (Seoul, Incheon, Daejeon, Deagu, Gwangju and Busan) in South Korea where the global hourly solar irradiation (GHSI) is currently measured, GHSI was calculated using a comparatively simple cloud cover radiation model (CRM) and sunshine fraction radiation model (SFRM). The result was that the measured and calculated values of GHSI were similar for the six regions. Results of cloud cover and sunshine fraction models have been compared with the measured data using the coefficient of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). The strength of correlation R2 varied within similar ranges: 0.886-0.914 for CRM and 0.908-0.934 for SFRM. Average MBE for the CRM and SFRM were 6.67 and 14.02 W/m2, respectively, and average RMSE 104.36 and 92.15 W/m2. This showed that SFRM was slightly accurate and used many regions as compared to CRM for prediction of GHSI.

A Comparison of CME Arrival Time Estimations by the WSA/ENLIL Cone Model and an Empirical Model

  • Jang, Soo-Jeong;Moon, Yong-Jae;Lee, Kyoung-Sun;Na, Hyeon-Ock
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.92.1-92.1
    • /
    • 2012
  • In this work we have examined the performance of the WSA/ENLIL cone model provided by Community Coordinated Modeling Center (CCMC). The WSA/ENLIL model simulates the propagation of coronal mass ejections (CMEs) from the Sun into the heliosphere. We estimate the shock arrival times at the Earth using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. We make a comparison between CME arrival times by the WSA/ENLIL cone model and IP shock observations. For the WSA/ENLIL cone model, the root mean square(RMS) error is about 13 hours and the mean absolute error(MAE) is approximately 10.4 hours. We compared these estimates with those of the empirical model by Kim et al.(2007). For the empirical model, the RMS and MAE errors are about 10.2 hours and 8.7 hours, respectively. We are investigating several possibilities on relatively large errors of the WSA/ENLIL cone model, which may be caused by cone model velocities, CME density enhancement factor, or CME-CME interaction.

  • PDF

Auto-calibration for the SWAT Model Hydrological Parameters Using Multi-objective Optimization Method (다중목적 최적화기 법을 이용한 SWAT 모형 수분매개변수의 자동보정)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo;Choi, Ji-Yong;Yang, Hee-Jeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.

A Numerical Simulation for Thermal Environments by the Modification of Land-use in Busan (부산지역 토지이용(land-use) 변화에 의한 열환경 수치모의)

  • 김유근;문윤섭;오인보;임윤규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.453-463
    • /
    • 2002
  • Prognostic meteorological model, MM5V3 (Mesoscale Model 5 Version 3) was used to assess the effects of the land-use modifications on spatial variations of temperature and wind fields in Busan during the selected period of summer season in 2000. We first examined sensitivity analysis for temperature between MM5V3 predictions and meteorological data observed at 4 AWS (Automatic Weather System) stations in Busan, which exhibited low structural and accurate errors (Mean Bias Error, MBE: 0.73, Root Mean Square Error, RMSE: 1.18 on maximum). The second part of this paper, MMSV3 simulations for the modification of land-use was performed with 1 km resolution in target domain, 46$\times$46 $\textrm{km}^2$ area around city of Busan. It was found that modification result from change of surface land-use in central urban area altered spatial distributions of temperature and wind. In particular, heat island core moved slightly to the seaward at 1300 LST. This results may imply that modification of surface land-use leads to change the thermal environments; in addition, it has a significant effect on local wind circulations and dispersions of air pollutants.

Generation of Horizontal Global Irradiance using the Cloud Cover and Sunshine Duration According to the Solar Altitude (일조시간 및 운량을 이용한 태양고도에 따른 수평면 전일사 산출)

  • Lee, Kwan-Ho;Levermore, Geoff J.
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.37-48
    • /
    • 2020
  • This study compares cloud radiation model (CRM) and sunshine fraction radiation model (SFRM) according to the solar altitude using hourly sunshine duration (SD) and cloud cover (CC) data. Solar irradiance measurements are not easy for the expensive measuring equipment and precise measuring technology. The two models with the site fitting and South Korea coefficients have been analyzed for fourteen cities of South Korea during the period (1986-2015) and evaluated using the root mean square error (RMSE) and the mean bias error (MBE). From the comparison of the results, it is found that the SFRM with the site fitting coefficients could be the best method for fourteen locations. It may be concluded that the SFRM models of South Korea coefficients generated in this study may be used reasonably well for calculating the hourly horizontal global irradiance (HGI) at any other location of South Korea.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

Pan evaporation modeling using deep learning theory (Deep learning 이론을 이용한 증발접시 증발량 모형화)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.392-395
    • /
    • 2017
  • 본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.

  • PDF

Application of Meteorological Drought Index in East Asia using Satellite-Based Rainfall Products (위성영상 기반 강수량을 활용한 동아시아 지역의 기상학적 가뭄지수 적용)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Svoboda, Mark D.;Hayes, Michael J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.123-123
    • /
    • 2019
  • 최근 기후변화로 인해 중국, 한국, 일본, 몽골 등을 포함한 동아시아 지역은 태풍, 가뭄, 홍수와 같은 자연재해의 발생 빈도가 증가하고 있는 추세이다. 중국의 경우 2017년 극심한 가뭄으로 1,850만 (ha)의 농작물 피해가 발생하였으며, 몽골 또한 2017년 4월 이후 극심한 가뭄으로 사막화가 급속도로 진행되고 있다. 위성 기반의 강우 자료는 공간과 시간 해상도가 높아짐에 따라 지상관측소 강수량 자료의 대체 수단으로 이용되고 있다. 본 연구에서는 Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Global Precipitation Climatology Centre (GPCC) 강우 위성 자료를 활용하여 기상학적 가뭄지수인 표준강수지수 (Standardized Precipitation Index, SPI)를 산정하였다. 시간 해상도는 월별 영상을 기준으로 2008년부터 2017년까지 지난 10년간의 데이터를 이용하였으며, 각각 격자가 다른 위성영상을 기존 기상관측소와 비교하였다. 피어슨 상관계수 (Pearson Correlation Coefficient, R)를 활용하여 강우 위성 영상과 지상관측소의 상관관계를 분석하고, 평균절대오차 (Mean Absolute Error, MAE), 평균제곱근오차 (Root Mean Square Error, RMSE)를 통해 통계적으로 정확도를 분석하였다. 인공위성 강수량 자료는 미계측 지역이 많은 곳이나 측정이 불가능한 지역에 효율성 측면에서 중요한 이점을 제공할 것으로 판단된다.

  • PDF

Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA (ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측)

  • Lee, Suhwan;Hong, Hyeonji;Park, Jisoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.