• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.1 seconds

Stress Relaxation Coefficient Method for Concrete Creep Analysis of Composite Sections (합성단면의 콘크리트 크리프 해석을 위한 이완계수법)

  • Yon, Jung-Heum;Kyung, Tae-Hyun;Kim, Da-Na
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • The concrete creep deformation of a hybrid composite section can cause additional deformation of the composite section and the stress relaxation of pre-compressive stress on the concrete section due to partial restraint of the deformation. In this study, the stress relaxation coefficient method (SRCM) is derived for simple analysis of complicate hybrid or composite sections for engineering purpose. Also, an equation of the stress relaxation coefficient (SRC) required for the SRCM is proposed. The SRCM is derived with the parameters of a creep coefficient, section and loading properties using the same method as the constant-creep step-by-step method (CC-SSM). The errors of the SRCM is improved by using the proposed SRC equation than the average SRC's which were estimated from the CC-SSM. The root mean square error (RMSE) of the SRCM with the proposed SRC equation for concrete with creep coefficient less than 3 was less than 1.2% to the creep deformation at the free condition and was 3.3% for the 99% reliability. The proposed SRC equation reflects the internal restraint of composite sections, and the effective modulus of elasticity computed with the proposed SRC can be used effectively to estimate the rigidity of a composite section in a numerical analysis which can be applied in analysis of the external restrain effect of boundary conditions.

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

Fault Detection & SPC of Batch Process using Multi-way Regression Method (다축-다변량회귀분석 기법을 이용한 회분식 공정의 이상감지 및 통계적 제어 방법)

  • Woo, Kyoung Sup;Lee, Chang Jun;Han, Kyoung Hoon;Ko, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.32-38
    • /
    • 2007
  • A batch Process has a multi-way data structure that consists of batch-time-variable axis, so the statistical modeling of a batch process is a difficult and challenging issue to the process engineers. In this study, We applied a statistical process control technique to the general batch process data, and implemented a fault-detection and Statistical process control system that was able to detect, identify and diagnose the fault. Semiconductor etch process and semi-batch styrene-butadiene rubber process data are used to case study. Before the modeling, we pre-processed the data using the multi-way unfolding technique to decompose the data structure. Multivariate regression techniques like support vector regression and partial least squares were used to identify the relation between the process variables and process condition. Finally, we constructed the root mean squared error chart and variable contribution chart to diagnose the faults.

Evaluation of multi-objective PSO algorithm for SWAT auto-calibration (다목적 PSO 알고리즘을 활용한 SWAT의 자동보정 적용성 평가)

  • Jang, Won Jin;Lee, Yong Gwan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.803-812
    • /
    • 2018
  • The purpose of this study is to develop Particle Swarm Optimization (PSO) automatic calibration algorithm with multi-objective functions by Python, and to evaluate the applicability by applying the algorithm to the Soil and Water Assessment Tool (SWAT) watershed modeling. The study area is the upstream watershed of Gongdo observation station of Anseongcheon watershed ($364.8km^2$) and the daily observed streamflow data from 2000 to 2015 were used. The PSO automatic algorithm calibrated SWAT streamflow by coefficient of determination ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency ($NSE_Q$), and especially including $NSE_{INQ}$ (Inverse Q) for lateral, base flow calibration. The results between automatic and manual calibration showed $R^2$ of 0.64 and 0.55, RMSE of 0.59 and 0.58, $NSE_Q$ of 0.78 and 0.75, and $NSE_{INQ}$ of 0.45 and 0.09, respectively. The PSO automatic calibration algorithm showed an improvement especially the streamflow recession phase and remedied the limitation of manual calibration by including new parameter (RCHRG_DP) and considering parameters range.

Convolutional Neural Networks for Rice Yield Estimation Using MODIS and Weather Data: A Case Study for South Korea (MODIS와 기상자료 기반 회선신경망 알고리즘을 이용한 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Nguyen, Cong Hieu;Lee, Kyungdo;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.525-534
    • /
    • 2016
  • In South Korea, paddy rice has been consumed over the entire region and it is the main source of income for farmers, thus mathematical model for the estimation of rice yield is required for such decision-making processes in agriculture. The objectives of our study are to: (1) develop rice yield estimation model using Convolutional Neural Networks(CNN), (2) choose hyper-parameters for the model which show the best performance and (3) investigate whether CNN model can effectively predict the rice yield by the comparison with the model using Artificial Neural Networks(ANN). Weather and MODIS(The MOderate Resolution Imaging Spectroradiometer) products from April to September in year 2000~2013 were used for the rice yield estimation models and cross-validation was implemented for the accuracy assessment. The CNN and ANN models showed Root Mean Square Error(RMSE) of 36.10kg/10a, 48.61kg/10a based on rice points, respectively and 31.30kg/10a, 39.31kg/10a based on 'Si-Gun-Gu' districts, respectively. The CNN models outperformed ANN models and its possibility of application for the field of rice yield estimation in South Korea was proved.

Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network (양방향 LSTM 순환신경망 기반 주가예측모델)

  • Joo, Il-Taeck;Choi, Seung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2018
  • In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

Thin Layer Drying Model of Sorghum

  • Kim, Hong-Sik;Kim, Oui-Woung;Kim, Hoon;Lee, Hyo-Jai;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Purpose: This study was performed to define the drying characteristics of sorghum by developing thin layer drying equations and evaluating various grain drying equations. Thin layer drying equations lay the foundation characteristics to establish the thick layer drying equations, which can be adopted to determine the design conditions for an agricultural dryer. Methods: The drying rate of sorghum was measured under three levels of drying temperature ($40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$) and relative humidity (30%, 40%, and 50%) to analyze the drying process and investigate the drying conditions. The drying experiment was performed until the weight of sorghum became constant. The experimental constants of four thin layer drying models were determined by developing a non-linear regression model along with the drying experiment results. Result: The half response time (moisture ratio = 0.5) of drying, which is an index of the drying rate, was increased as the drying temperature was high and relative humidity was low. When the drying temperature was $40^{\circ}C$ at a relative humidity (RH) of 50%, the maximum half response time of drying was 2.8 h. Contrastingly, the maximum half response time of drying was 1.2 h when the drying temperature was $60^{\circ}C$ at 30% RH. The coefficient of determination for the Lewis model, simplified diffusion model, Page model, and Thompson model was respectively 0.9976, 0.9977, 0.9340, and 0.9783. The Lewis model and the simplified diffusion model satisfied the drying conditions by showing the average coefficient of determination of the experimental constants and predicted values of the model as 0.9976 and Root Mean Square Error (RMSE) of 0.0236. Conclusion: The simplified diffusion model was the most suitable for every drying condition of drying temperature and relative humidity, and the model for the thin layer drying is expected to be useful to develop the thick layer drying model.

Combined 1D/2D Inundation Simulation of Riverside Farmland using HEC-RAS (HEC-RAS를 이용한 하천변 농경지의 1, 2차원 연계 침수 모의)

  • Jun, Sang Min;Song, Jung-Hun;Choi, Soon-Kun;Lee, Kyung-Do;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.135-147
    • /
    • 2018
  • The objective of this study was to analyze the characteristics of combined 1D/2D inundation simulation of riverside farmland using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). We compared and analyzed inundation simulation results between 1D and combined 1D/2D hydraulic simulation using HEC-RAS. Calibration and validation of stream stage were performed using three rainfall events. The coefficient of determination ($R^2$) and root mean square error (RMSE) between simulated and observed stream stage were 0.935 - 0.957 and 0.250 m - 0.283 m in calibration and validation, respectively. The inundation area showed no significant difference in 1D and combined 1D/2D simulation ($8.48km^2$ in 1D simulation, $8.75km^2$ in combined 1D/2D simulation). The average inundation depth by 1D simulation was 1.4 m deeper than combined 1D/2D simulation. In the lower inundation depth, the inundation area by combined 1D/2D simulation was larger than inundation area by 1D simulation. As the inundation depth increased, the inundation area by 1D simulation became wider. In the case of the 1D/2D combined simulation, low elevation areas along the river bank were inundated widely. Compared to 1D/2D combined simulation, the flood radius in some sections was longer in 1D simulation. In the 1D analysis, because the low altitude riverside farmlands are also assumed to stream, it is calculated that riverside farmlands have the same stage as the mainstream when the stream is overflowed. Therefore, the inundation area seems to be overestimated in those sections. In other regions, the inundation areas tend to be broken depending on overflow by each stream cross-section. In the case of river flooding, the overflow is expected to flow to the lower area depending on the terrain, such as the results of the combined 1D/2D simulation. It is concluded that the results of combined 1D/2D inundation simulation reflected the topographical characteristics of low-lying farmland.

An Estimation of the Composite Sea Surface Temperature using COMS and Polar Orbit Satellites Data in Northwest Pacific Ocean (천리안 위성과 극궤도 위성 자료를 이용한 북서태평양 해역의 합성 해수면온도 산출)

  • Kim, Tae-Myung;Chung, Sung-Rae;Chung, Chu-Yong;Baek, Seonkyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.275-285
    • /
    • 2017
  • National Meteorological Satellite Center(NMSC) has produced Sea Surface Temperature (SST) using Communication, Ocean, and Meteorological Satellite(COMS) data since April 2011. In this study, we have developed a new regional COMS SST algorithm optimized within the North-West Pacific Ocean area based on the Multi-Channel SST(MCSST) method and made a composite SST using polar orbit satellites as well as the COMS data. In order to retrieve the optimized SST at Northwest Pacific, we carried out a colocation process of COMS and in-situ buoy data to make coefficients of the MCSST algorithm through the new cloud masking including contaminant pixels and quality control processes of buoy data. And then, we have estimated the composite SST through the optimal interpolation method developed by National Institute of Meteorological Science(NIMS). We used four satellites SST data including COMS, NOAA-18/19(National Oceanic and Atmospheric Administration-18/19), and GCOM-W1(Global Change Observation Mission-Water 1). As a result, the root mean square error ofthe composite SST for the period of July 2012 to June 2013 was $0.95^{\circ}C$ in comparison with in-situ buoy data.

A Study on the Reduction of Non-Point Source Pollution loads from Small Agricultural Watershed by Applying Surface Covering Scenario using HSPF Model (HSPF 모델을 이용한 지표피복 시나리오 적용에 따른 농촌 소유역에서의 비점원오염 저감연구)

  • Jung, Chung-Gil;Park, Jong-Yoon;Kim, Sang-Ho;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.103-103
    • /
    • 2012
  • 본 연구에서는 시험포장($1276.6m^2$)에서의 지표피복 BMPs (Best Management Practices) 시나리오를 적용하여 얻은 평균 유출저감율을 HSPF 모델에 적용하여 유역차원에서의 비점원오염 저감효과를 평가하고자 한다. 본 연구에서는 별미천 유역($1.21km^2$)을 대상으로 모형의 적용을 위한 입력자료로 기상자료와 지형자료를 구축하였으며 기상자료로 수원, 양평, 이천 기상관측소 자료를 구축하였으며, 지형자료로 격자크기 2m의 DEM (Digital Elevation Model)과 토지이용도는 2006년 5월 1일 QuickBird 영상을 제공받아 기존 환경부, 건교부, USGS의 토지피복분류체계 및 현장조사를 통하여 QuickBird 영상으로부터 추출 가능한 정밀농업정보에 대한 항목을 결정하였으며, 정사보정된 QuickBird 영상을 스크린 디지타이징 기법(On-Screen Digitizing Method)을 이용하여 총 21개 토지이용항목의 정밀토지이용도를 구축하였다. 실제모니터링으로 측정된 자료를 바탕으로 수위-유량곡선 산정 및 오염부하곡선을 선정, 2011년 6월 8일부터 10월 31일 분석기간으로 HSPF 모델링을 실시하였으며 모의결과 월별 통계에 따른 적용성 분석으로 RMSE (Root Mean Square Error) 는 1.15 ~ 1.76(mm/day), $R^2$는 0.62 ~ 0.78, Nash-Sutcliffe model efficiency (NSE)는 0.62 ~ 0.76로 모의치는 실측치와 유의성이 있는 것으로 분석되었다. 또한, Sediment, T-N, T-P의 $R^2$는 각각 0.72, 0.62, 0.63으로 상관성을 보이는 것으로 분석되었다. 시험포장으로부터 얻어진 event별 볏짚을 이용한 지표피복시나리오적용 후 밭에서의 평균 유출 약 10 % 유출율 감소 조건과 실제 평균 비점원오염 저감효과 89.7 % ~ 99.4 %의 결과로부터 지표피복효과의 침투효과를 HSPF 모델로 적용하기 위해 침투량(INFILT)를 조절하여 평균유출 약 10 %가 감소되는 16.0 mm/hr 값을 선정하였다. 그 결과, Sediment. T-N, T-P의 평균 저감율은 각각 87.2 %, 28.5 %, 85.1 %로 나타났으며 이는 시험포장에서의 실제 평균 비점오염 저감효과 89.7 % ~ 99.4 %에 근접함을 알 수 있었다. 이 결과로부터 침투량 조절에 따른 지표피복(침투짚단)효과는 Sediment, T-P에서 저감효율이 80 % 이상으로 높았지만 T-N은 약 30 %로 낮은 저감율을 보임으로써 저감효과가 크지 않음을 나타냈다.

  • PDF