• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.035 seconds

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System (지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구)

  • Kim, Ji Hye;Eom, Hyun-Min;Choi, Jong-Kuk;Lee, Sang-Min;Kim, Young-Ho;Chang, Pil-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data (기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Kim, Young-Won;Byeon, Seong-Hyeon;Lee, Soo-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.603-614
    • /
    • 2021
  • Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data (격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Hur, Jina;Song, Chan-Yeong;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.164-178
    • /
    • 2022
  • Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.