• Title/Summary/Keyword: root-locus method

Search Result 72, Processing Time 0.019 seconds

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

Dynamic Characteristics Improvement of a Step-Down Chopper Using Load Current Feed-Forward Compensator (부하전류 전향보상기를 이용한 강압쵸퍼의 동특성 항상)

  • Chun, Ji-Young;Jeon, Kee-Young;Chung, Chun-Byung;Han, Kyung-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper, The author present a load current feed-forward compensator by method that improve voltage controller of Step-down Chopper to get stable output voltage to sudden change of load current. To confirm the characteristics of a presented load current feed-forward compensator compared each transfer function of whole system that load current feed-forward compensator is added with transfer function of whole system that existent voltage controller is included using Mason gains formula in Root locus and Bode diagram. As a result the pole of system is improved, extreme point of the wave and system improves, and size of peak value and phase margin of break frequency in resonance frequency confirmed that is good. Therefore, presented control technique could confirm that reduce influence by perturbation and improves stationary state and dynamic characteristics in output of Step-down Chopper.