• Title/Summary/Keyword: root-locus method

Search Result 72, Processing Time 0.02 seconds

Analytical Evaluation of Rotor Dynamic Characteristic of Roots Type Vacuum Pump (루츠타입 진공펌프 동특성의 해석적 평가)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Ha, Jeong-Min;Gu, Dong-Sik;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1112-1119
    • /
    • 2011
  • The goal of this study is the stability evaluation of a vacuum pump through modal test and rotor dynamics. Roots type vacuum pump, which is a dry vacuum pump, is necessary for the manufacturing process of the semiconductor and the display. Eigenvalue was solved by the finite-element method(FEM) using 2D and 3D models, then the modal test result was compared with the FEM result. According to the comparison, the analysis result using the 2D was more accurate than the 3D model. Therefore, rotor dynamics was performed by the 2D model. Campbell diagram and root-locus maps, which were calculated by complex-eigenvalue analysis, were used to evaluate the stability of the rotors of the vacuum pump. And displacement solved by unbalance response analysis was compared with the minimum clearance between two rotors of the vacuum pump. Thus, the vacuum pump is assumed operated under steady state through the evaluation of the rotor dynamics.

Robust PID $\times$ (n-1) Stage PD Controller

  • Numsomran, Arjin;Julsereewong, Prasit;Ukakimaparn, Prapart;Trisuwannawat, Thanit;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.298-301
    • /
    • 1999
  • This paper presents a design technique based on the root locus method fur a class of $n^{th}$ order plants using PID (Proportional-Integral-Derivative) x (n-1) stage PD controller. It is intended to satisfy both transient and steady state response specifications. This controller can be used instead of a conventional PID controller for the higher order plants to obtain better performances. The controlled system is approximated as a stable and robust second order controlled system. Only adjusting the controller gain, the desired performances of the controlled system are satisfied. For the stable plant including the plant with small dead time, the controlled system is made robustly stable. In case of the unstable plant, when the controller gain is adjusted higher than the critical value, the unstable plant can also be made stable. Robustness properties given by this controller proposed in this paper have also been demonstrated by numerical examples.

  • PDF

A Basic Study for Tuning Power System Stabilizer PART-II : Tuning Methods for Selecting Optimal PSS Parameters in Real Power Systems (PSS 튜닝을 위한 기본 연구 PART II : PSS 실계통 최적 정수 선정을 위한 튜닝기법)

  • Kim, Tae-Gyun;Sin, Jeong-Hun;Yun, Yong-Beom;Kim, Dong-Jun;Mun, Yeong-Hwan;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.350-358
    • /
    • 2000
  • Based on the results in the first-part paper, PSS tuning methods including the determination of PSS gain and compensation of phasor lagging are investigated in this second part. In the phase compensation, PSS should compensate phase lagging, resulted from power system-generator-excitation system loop, to provide damping torque in equal phase with the generator speed. Also, PSS gain should be determined to provide maximum damping torque as much as possible without the other modes unstable. In this paper, gain tuning method using the root-locus and the phase compensation of PSS at the one machine with infinite bus system are presented. The differences between PSS tuning at the tuning condition and at the least-stable condition are also discussed.

  • PDF

Characteristics of the Proportional Pressure Control Valve for 4 Wheel Steering System on the Passenger Car (승용차 4륜 조향(4WS) 장치용 비례 압력 제어 밸브의 특성에 관한 연구)

  • 오인호;장지성;이일영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • The proportional pressure control valve(PCV) is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering(4WS) system on the passenger car. The valve should have versatile functions and higher performance. But, it is hard to find the proportional pressure control valve suitable for the 4WS system. In this paper, the determination of the valve parameters was studied by the stability discrimination and the characteristic analysis for the purpose of the development of a new PCV for the 4WS. The mathematical model of the valve was derived from the valve-cylinder system and the programme for numerical computation was developed. The transfer function of the system was obtained from the mathematical model. The characteristics of the valve were inspected through the experiment and compared to those obtained by numerical method. And then the stability discrimination of the system was done by root locus and the analysis of characteristics was done by the developed programme. From the experiment and the analysis of characteristics was done by the developed programme. From the experiment and the inspection, the appropriation of mathematical model and the usefulness of the programme were confirmed. And the parameters which might affect the performance of the valve can be determined by considering the stability discrimination, the characteristics analysis and required functions.

  • PDF

Control System Design and Performance Analysis for Transmission Static Compensator (송전용 무효전력보상기의 제어시스템 설계와 성능해석)

  • 한병문;최대길
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • This paper describes a control system design for the transmission STATCOM by applying a no-linear state feedback, and the performance analysis of the control system by simulations and scaled-model experiments. A mathematical model for the STATCOM was derived using a 3-phase equivalent circuit and a perturbation state equation with respect to a typical operating point. A transfer function to describe the dynamics of STATCOM was derived by considering nonlinear state feedback. A controller design was completed by analyzing the feedback system stability with root locus method. The performance analysis of the conceived control system was verified by simulations with the EMTP and experiments with scaled model, assuming that the STATCOM is connected to an 154kV transmission system. The results show that the conceived control system has excellent performance to control the reactive power of the transmission system.

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.

Stability analysis in BWRs with double subdiffusion effects: Reduced order fractional model (DS-F-ROM)

  • Gilberto Espinosa-Paredes;Ricardo I. Cazares-Ramirez;Vishwesh A. Vyawahare;Erick-G. Espinosa-Martinez
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1296-1309
    • /
    • 2024
  • The aim of this work is to explore the effect of the double subdiffusion on the stability in BWRs. A BWR novel reduced order model with double subdiffusion effects: reduced order fractional model (DS-F-ROM) to describe the neutron and heat transfer processes was proposed for this study. The double subdiffusion was developed with a fractional-order two-equation model, and with different fractional-orders and relaxation times. The stability analysis was carried out using the root-locus method and change from the s to the W domain and were confirmed using the time-domain evolution of neutron flux for a unit step change in reactivity. The results obtained using the reduced fractional-order model are presented for different anomalous diffusion coefficient values. Results are compared with normal diffusion and P1 equations, which are obtained straightforwardly with DS-ROM when relaxation time tends to zero, and when the anomalous diffusion coefficient tends to one, respectively.

Study on the Aeroservoelastic Stability Analysis with ZAERO (ZAERO를 활용한 서보공력탄성학적 안정성 해석기법 연구)

  • Rho, Hong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • The aeroservoelastic analysis that deals with the interactions of the inertial, elastic, and aerodynamic forces and the influence of the control system have been performed. MSC Nastran was used for the free vibration analysis of the structure model as the pre-analysis. ZAERO was used to calculate the unsteady aerodynamic forces. The unsteady aerodynamic forces were verified by comparing with Doublet Hybrid Method. Karpel's Minimum-State Approximation method was used for approximation of the aerodynamic forces to the Laplace domain in the frequency domain. The aeroservoelastic state-space equation was obtained by combining the aeroelastic equation with the actuator dynamics. The analysis of aeroservoelastic stability concerning the elevator input of the high aspect ratio model was performed. The root-locus method and time-integration method were used for the analysis of aeroservoelastic in frequency and time domain.

Control Performance Improvement Using Overshoot Detecting Logic and Feedforward Disturbance Observer (오버슈트 탐지 로직 및 피드포워드 외란관측기를 활용한 제어 성능 개선 연구)

  • Lee, Hanbit;Lim, Seunghan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.431-441
    • /
    • 2020
  • In this paper, we propose a new method using a feedforward disturbance observer that guarantees stability and robustness about the effects of external disturbance and model uncertainty. The method is consist of a disturbance observer, a feedforward controller, and an overshoot detecting logic. It has an advantage of reducing the excessive overshoot by external disturbance and model uncertainty. Also, it is easy to adjust the control gain due to a simple structure. In order to verify the effectiveness of a new method, simulation results are given for longitudinal model of F-16 aircraft. By reflecting a various of model uncertainties, the stability and the robustness are guaranteed. Finally, the stability and the robustness of the proposed method are verified using root locus plot and bode plot.

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.