• Title/Summary/Keyword: root-locus method

Search Result 72, Processing Time 0.02 seconds

Analysis for stability and performance of INS/GPS integration system (INS/GPS 결합 시스템의 안정도 및 성능 분석)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.445-447
    • /
    • 1998
  • This paper shows simulation results for stability and performance of two INS/GPS integration systems. First, the code tracking error of GPS receiver is analyzed by spectrum analysis and simulated for the tight and loose INS/GPS integrations. Next, stability of the integrated systems are simulated using root locus method. As loop filter in the GPS receiver, passive filter and active filter are used and compared.

  • PDF

Modeling and PID Control of an Electro-Hydraulic Servo System (전기유압 서보시스템의 모델링과 PID 제어)

  • Lee, Se Jin;Kim, Cheol Jae;Kang, Yong Ju;Choi, Soon Woo;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • The electro-hydraulic training device (TP511) provided by Festo Didactic are widely used, but teaching materials do not include mathematical modeling. Thus, there is a limit for full-scale learning about the electro-hydraulic servo system by using this equipment. In this study, for the purpose of improving students' understanding of the classical control and modern control Festo's electro-hydraulic servo training device (TP511) was mathematically modeled and parameter values were calculated by examining the characteristics of each component. And P, PI, PD, and PID controllers highly used in the industrial field, were designed by using the root locus method to achieve the optimal gains and used for simulation and experiments using the Festo's electro-hydraulic servo training apparatus. The validity of the derived mathematical model and the calculated parameter values were verified through simulation and experiment. It was found that the p control can achieve the control target more effectively than the pid control for Festo's electro-hydraulic servo training system by using the root locus method.

On Design Intelligent Control System by Fussionf of Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전자 알고리즘 융합에 의한 지능형 제어 시스템)

  • Lee, Mal-Rye;Kim, Tae-Eun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.952-958
    • /
    • 1999
  • This paper presented the application of GAs as a means of finding optimal solutions over a parameter space in the controller design for a fuzzy control system. The performance can involve a weighted combination of various performance characteristics such as rise-time, settling-time, settling-time, overshoot. The results obtained here are compared with those for a traditional design obtained using the root-locus method. In contrast to traditional methods, the GA-based method does not require the usual mathematical processess or mathematical model of the system. In this paper, the Ga-based Fuzzy control system combining Fuzzy control theory with the GA, that is known to be very effective in the optimization problem, will be proposed The effectiveness of the proposed control system will be demonstrated by computer simulations using task tracking position system in stable and unstable linear systems. It is shown that the GA-based controller is better than the traditional controller used It stable and unstable linear systems.

  • PDF

A Study on the Power System Stabilizer Design using Object-Oriented Method (객체지향기법을 적용한 PSS 설계에 관한 연구)

  • Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.671-677
    • /
    • 1999
  • In this paper, we have designed power system stabilizer (PSS) using object-oriented method. There are several types of power system stabilizer. A proportional-integral(PI) controller is very simple for practical implementation. Therefore it has been widely employed by the industry. The methods of obtaining the gains(Ki,Kp) of PI controller are root-locus method and sub-optimal regulator approach. But these methods are cannot be applicable to nonlinear system and faulted power system. So we proposed a new method which can be applied to nonlinear system by numerical analysis method. The method of dynamic system simulation by numerical method is very difficult and complex. We proposed flexible simultaion method for complex power system analysis using object-oriented programming(OOP) and applied to PI controller design.

  • PDF

Modeling and experiment for the force/impact control via passive hardware damper

  • Oh, Y.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.172-178
    • /
    • 1993
  • This paper deals with the modeling and experiment of a robot system for force/impact control performance. The basic model is composed of a direct drive motor, servo amplifier, link, force sensor and environments. Based on the developed model, the stability of the whole system was analyzed via root locus method. For the force control, integral force compensation with velocity feedback method shows the best performance of all the explicit force control strategies. In dealing with impact, PID position control and the explicit force control method were implemented. Instead of add more damping to the robot system by velocity feedback, we developed a new passive damping method and it was also applied to enhance the damping characteristic of the system.

  • PDF

A Study on the Appropriate Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기의 적정 파라메터 선정에 관한 연구)

  • 김경철;문병희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.45-53
    • /
    • 2002
  • This paper presents an algorithm for the appropriate parameter selection of a power system stabilizer and power converters in two-area power systems with a series HVDC links. The method for PSS is one of the classical techniques by allocating properly poly-zero positions to fit as closely as desired the ideal phase lead and by changing the gain to produce a necessary damping torque. Proper parameter of power converters are obtained in order to have sufficient speed and stability margin to cope with changing reference values and disturbances based on the Root-locus technique. The small signal and transient stability studies using the PSS and power converters parameters obtained from these methods show that a natural oscillation frequency of the study case system is adequately damped. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

Design and Implementation of a Control System for the Interleaved Boost PFC Converter in On-Board Battery Chargers (차량 탑재형 배터리 충전기의 인터리브드 부스트 PFC 컨버터 제어시스템 설계 및 구현)

  • Lee, Jun Hyok;Jung, Kwang-Soon;Lee, Kyung-Jung;Jung, Jae Yeop;Kim, Ho Kyung;Hong, Sung-Soo;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.843-850
    • /
    • 2016
  • In this paper, we propose a digital controller design process for the interleaved type of a boost PFC (Power Factor Correction) converter which can disperse the heat of the switching devices due to the interleaved topology. We establish a mathematical model of a boost PFC converter and propose a controller design method based on the root locus. The performance of the designed controller is verified by simulations. The measurement of the input voltage, inductor currents, and the converter output link voltage are needed for the control of the converter system which consists of a power unit and a control unit where a high-performance 32-bit microcontroller is used. The adjustment of A/D conversion timing is also needed to avoid high frequency noise generated when the switches on/off. It is illustrated by the real experiments that the designed control system with the properly adjusted ADC timing satisfies the given performance specifications of the interleaved boost PFC converter in the on-board slow battery charger.

The Parameter Estimation and Stability Improvement of the Brushless DC Motor (Brushless DC Motor의 제어 파라미터 추정과 안정도향상)

  • Kim, Cherl-Jin;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.131-138
    • /
    • 1999
  • Generally, the digital controller has many advantages such as high precision, robustness to electrical noise, capability of flexible programming and fast response to the load variation. In this study, we have established proper mathematical equivalent model of Brushless DC (BLDC) motor and estimated the motor parameter by means of the back-emf measurement as being the step input to the controlled target BLDC motor. And the validity of proposed estimation method is confirmed by the test result of step response. As well, we have designed the reasonable digital controller as a consequence of the root locus method which is obtained from the open-loop transfer function of BLDC motor with hall sensor, and the determination of control gain for variable speed control. Here, revised Ziegler-Nichols tuning method is applied for the proper digital gain establishment, and the system stability is verified by the frequency domain analysis with Bode-plot and experimentation.

  • PDF

Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling (하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법)

  • Baek, Seung-Mook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

A Study on Selected Harmonic Control Method for PW Inverter by Fluctuating input Voltage Method (PWM 인버터의 DC 링크 맥동전압 제어에 의한 특정 고조파 제어기법)

  • 전희종;박재원;오종민;정을기;정인성
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.6
    • /
    • pp.51-59
    • /
    • 1993
  • In this paper, we study the effects that the variations of machine parameters and frequency of which affect the instability occured in induction motors when operated at low speed or light load, by obtaining the locus of dominant root for the characteristic equation.

  • PDF