• Title/Summary/Keyword: root response

Search Result 938, Processing Time 0.026 seconds

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

THE EFFECT OF TYPES OF ORTHODONTIC FORCE ON THE ROOT RESORPTION AND REPAIR IN RAT MOLAR (교정력 양상이 백서의 치근 흡수와 회복에 미치는 효과)

  • Jang, Dong-Soo;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.631-648
    • /
    • 1994
  • The purpose of this study was to investigate the effects of different types of orthodontic force on the root resorption and repair in rat molar. 77 rats were divided into three groups; The control group was not equiped with orthodontic appliance between incisor and first molar. The experimental group was subdivided into closed coil spring subgroup and elastic chain subgroup by the application methods of orthodontic force. Initial orthodontic force between incisor and first molar was 100g. Experimental period was 8 weeks; for 4 weeks the appliance was acting and for another 4 weeks, removed. Root resorption and repair in the root of first molar was examined by light microscope for histologic changes and by inductively coupled plasma spectroscopy(ICP) for quantitative changes. The results were as follows: 1. In the closed coil spring subgroup odontoclasts and root resolution were appeared one week earlier. 2. One week after orthodontic force was eliminated the repair response in the resorptive lacuna was seen in both subgroups. Delayed resorption was seen on the periphery of resorptive lacunae whereas reparative response was seen in the center of lacunae. A new resorption was seen one week after orthodontic force was eliminated. Root contour was partially restored by repairing of resorbed root. 3. The weight ratios of calcium and phosphorous to the sample were decreased during resorptive process but increased during repair process in both the orthodontic groups, but not more than the control group. 4. By different types of orthodontic force (closed coil spring or elastic chain) resorption process was affected but repair process was not.

  • PDF

Optimization of Extraction Condition of Methyl Jasmonate-treated Wild Ginseng Adventitious Root Cultures using Response Surface Methodology

  • Liu, Qing;Jo, Yang Hee;Ahn, Jong Hoon;Kim, Seon Beom;Paek, Kee-Yoeup;Hwang, Bang Yeon;Park, So-Young;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • v.24 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • The usage of wild ginseng (Panax ginseng C.A. Meyer) has been limited due to short supply and high price. Therefore, sufficient production as well as efficient extraction of mountain ginseng are required for the development as products. In this study, wild ginseng adventitious root cultures were prepared for efficient production with advantages of fast growth and stable production. Treatment of methyl jasmonate (MJ) to wild ginseng adventitious root cultures increased the extraction yield and antioxidative activity. Further investigation on effect of extraction conditions suggested the importance of ethanol concentration on antioxidative activity and extraction yield of MJ-treated wild ginseng adventitious root cultures. Optimized extraction condition of MJ-treated wild ginseng adventitious root cultures for maximum extraction yield and antioxidative activity was determined using response surface methodology with three-level-three-factor Box-Behnken design (BBD). Extraction of 1 g MJ-treated wild ginseng adventitious root culture with 30 ml of 9% ethanol at $30^{\circ}C$ produced 310.2 mg extract with 71.0% antioxidative activity at $100{\mu}g/ml$. Taken together, MJ-treated wild ginseng adventitious root culture is valuable source for wild ginseng usage and optimized extraction condition can be used for the development of functional products or folk remedies.

Effects of Ozone Environmental Stress on Growth and Stomatal Response in the F2 Hybrid Poplar (Populus trichocarpa × Populus deltoides) (오존 환경(環境)이 잡종(雜種) 포플러의 생장(生長)과 기공개폐(氣孔開閉)에 미치는 영향(影響))

  • Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • Thirty-six $F_3$ hybrid poplar (Populus trichocarpa${\times}$P. deltoides) clones were fumigated with ozone to select for ozone sensitive and resistant clones. Fumigation was applied for 6 to 8 hours each day for approximately 3 months at ozone concentrations of 90 to 115 ppb using by open-top chambers. Height, diameter, number of leaves, total biomass, biomass components, root/shoot ratios, leaf drop and stomatal response were investigated. In summary, ozone generally reduced height, diameter, number of leaves, total biomass, and root/shoot ratios. Ozone stress induced leaf drop and foliar senescence in trees. This study showed very low relationship between total biomass and stomatal conductance. Increased plant resistant to ozone is not always correlated with stomatal behaviour. Probably, characterization of biochemical and other physiological responses to ozone exposure can provide a better understanding of tree response to ozone environment.

  • PDF

Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization (Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계)

  • Kim Sang-Tae;Lim Yong-Kon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • We Propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used for spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR filter and for the case of the In filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

Effect of Light on Root Growth and Gravitropic Response of Phytochrome Mutants of Arabidopsis (Arabidopsis phytochrome mutant에서 빛이 뿌리 생장과 굴중성 반응에 미치는 영향)

  • Park, Ji-Hye;Lee, Sang-Seoung;Woo, Soon-Hwa;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.681-686
    • /
    • 2012
  • Light, one of the environmental stimuli, is fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. To investigate the effect of light on root growth and gravitropism, we used the Arabidopsis phytochrome mutants grown in several light conditions. The root growth of $phyA$ reared in all light conditions except white light and was stimulated compared to the WT. The stimulation of root growth was obvious in $phyA$ grown in red light. On the other hand, the root growth of $phyB$ grown in all light conditions decreased, and the lowest rate of decrease was observed in $phyAB$ grown in white and red light. The gravitropic response of $phyA$ was stimulated compared to the WT when it was grown in all light conditions except far-red light. $PhyAB$ grown in all light conditions showed the inhibition of gravitropic response. The transcript level of ACS, one of the enzymes regulating ethylene biosynthesis, increased in $phyA$ grown in white and red light, but not in $phyA$ grown in far-red light. In conclusion, these results suggested that the $P_{fr}$ form of $phyB$ regulates the root growth and gravitropism.

Molecular mechanism underlying Arabidopsis root architecture changes in response to phosphate starvation

  • Chun, Hyun Jin;Lee, Su Hyeon;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.174-174
    • /
    • 2017
  • To cope with phosphate (Pi) deficient stress, plants modulate various physiological and developmental processes, such as gene expression, Pi uptake and translocation, and root architecture changes. Here, we report the identification and characterization of novel activation-tagged mutant involved in Pi starvation signaling in Arabidopsis. The hpd (${\underline{h}ypersensitive}$ to ${\underline{P}i}$ $ {\underline{d}eficiency}$) mutant exhibits enhanced phosphate uptake and altered root architectural change under Pi starvation compared to wild type. Expression analysis of auxin-responsive DR5::GUS reporter gene in hpd mutant indicated that auxin translocation in roots under Pi starvation are suppressed in hpd mutant plants. Impaired auxin translocation in roots of hpd mutant was attributable to abnormal root architecture changes in Pi starvation conditions. Our results indicated that abnormal auxin translocation in hpd mutant might be due to mis-regulation of auxin efflux carrier proteins, PIN-FORMED (PIN) 1, and 2 under Pi starvation conditions. Not only expression levels but also expression domains of PIN proteins were altered in hpd mutant in response to Pi starvation. Molecular genetic analysis of hpd mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3'-end processing. The results suggest that mRNA processing plays crucial roles in Pi homeostasis as well as developmental reprograming in response to Pi deprivation in Arabidopsis.

  • PDF

A QUANTITATIVE ANALYSIS OF THE IMMUNOGLOBULIN CONTAINING CELLS IN PERIAPICAL LESIONS OF THE HUMAN TEETH (치근단 병소에서 면역글로불린의 분포에 관한 연구)

  • Cho, Soo-Jin;Yoon, Tae-Chull;Park, Dong-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.55-70
    • /
    • 1995
  • Periapical lesions develop as a result of immunopathologic response to irritants from infected root canal systems. Removal of these irritants from the root canal system and sealing the root canal space may induce he31ing of the periapical lesions. 83 periapical lesions diagnosed as periapical abscess, periapical granuloma, chronic nonspecific inflammation, fibrosis and periapical Cyst were evaluated for the distribution of immunoglobulin containing cells. The influence of the state of root canal treatment on the distribution of immunoglobulin containing cells has evaluated. All lesions were divided into a group with no treatment, a group with canal enlargement, a group filled with gutta percha, and a group filled with Vitapex(calcium hydroxide). The distribution of immunoglobulin-containing cells according to the presence of pain and fistula was also evaluated. The following results were obtained. 1. Statistically significant difference in the distribution of immunoglobulin-containing cells among periapical abscess, periapical granuloma, chronic nonspecific inflammation/fibrosis and periapical cyst were found.(Kruskal-Wallis analysis, P<0.05) The number of immunoglobulin-containing cells in fibrosis was remarkably lower than that of periapical abscess, granuloma and cyst. 2. IgM and IgA containing cells were predominantly observed in periapical abscesses and periapical cysts, respectively. 3. All periapical lesions showed a large number of IgG containing cells followed by IgM, IgA and IgE containing cells. 4. There was a decrease in all Ig-containing cells in the group with canal filling compared to groups without treatment or with enlargement. That is, there is a decrease in Ig-containing cells as treatment progresses. 5. No significant correlation existed between the presence of pain and fistula and the distribution of immunoglobulin containing cells in periapical lesions.(t-test) Results appear to support that immune response are actively involved in the development and progress in periapical lesions. The fact that distribution of immunoglobulins differ according to the state of endodontic treatment suggests that root canal treatment may alter the humoral immune response of the periapical lesions.

  • PDF

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

The Effect of Oryzalin on Growth and Gravitropism in Arabidopsis Roots (Oryzalin이 애기장대 뿌리 생장과 굴중성 반응에 미치는 작용)

  • Go, Jin Gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • Oryzalin is a dinitroaniline herbicide that has been known to disrupt microtubules. Microtubules and microfilaments are components of cytoskeletons that are implicated in plant cell growth, which requires the synthesis of cellulose when cell walls elongate. In addition, microtubules are also involved in the sedimentation of statoliths, which regulate the perception of gravity in the columella cells of root tips. In this study, we investigated the effect of oryzalin on the growth and gravitropic response of Arabidopsis roots. The role of ethylene in oryzalin's effect was also examined using these roots. Treatment of oryzalin at a concentration of 10-4 M completely inhibited the roots' growth and gravitropic response. At a concentration of 10-6 M oryzalin, root growth was inhibited by 47% at 8 hr when compared to control. Gravitropic response was inhibited by about 38% compared to control in roots treated with 10-6 M oryzalin for 4 hr. To understand the role of oryzalin in the regulation of root growth and gravitropic response, we measured ethylene production in root segments treated with oryzalin. It was found that the addition of oryzalin stimulated ethylene production through the activation of ACC oxidase and ACC synthase genes, which are key components in the synthesis of ethylene. From these findings, it can be inferred that oryzalin inhibits the growth and gravitropic response of Arabidopsis roots by stimulating ethylene production. The increased ethylene alters the arrangement of the microtubules, which eventually interferes with the growth of the cell wall.