• Title/Summary/Keyword: root response

Search Result 938, Processing Time 0.037 seconds

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

Study on the Changes of Dentinal Hypersensitivity and Surface Characteristics Following the Various Root Treatment (수종의 치근면 처치 방법에 따른 상아질 지각 과민 변화 및 표면 특성에 관한 연구)

  • Kwon, Soon-Young;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 1999
  • Exposure of the root surface due to gingival recession after periodontal surgery, elicit pain response when exposed to mechanical, heat, chemical or osmotic irritation. Especially patients treated with periodontal surgery, show high frequency. There have been reports that the 1 out of 7 patients complains of dentinal hypersensitivity. There have been many studies on the clinical effects of various materials on the treatment of dentinal hypersensitivity. The purposes of this study were to evaluate the effect of sodium chloride and potassium oxalate and to observe the relationship between the dentinal hypersensitivity and surface characteristics such as dentinal tubule size and number. This study included 20 teeth which were scheduled for extraction and had no pulpal disease. These teeth were divided into Root planing group, EDTA group, NaCl group and Oxalate group. Dentinal hypersensitivity is measured by tactile, pressured air and cold water using NRS (Numerical Rating Scales). Teeth were extracted under local anesthesia and each specimen was sectioned to a size about 3 X 5 mm and was examined under the scanning electron microscope (X2,000) The results were as follows, 1. The EDTA group exhibited significantly increased dentinal hypersensitivity comparing with the other groups. 2. The NaCl and Oxalate groups showed significantly reduced dentinal hypersensitivity comparing with the EDTA group. 3. As a method for dentinal hypersensitivity measurement, it was presumed thet tactile sensitivity test was not sensitive method but air blast test and cold water test were adequate method. 4. In a SEM study, the root planing group exhibited amorphous smear layer and showed no dentinal tubule orifice, but the EDTA group showed the large number of dentinal tubules. On the other hand, the NaCl and Oxalate groups did not show exposed dentinal tubules. The NaCl group showed more rough root surface than the EDTA group, and the Oxalate group showed many participates to be presumed as calcium oxalate particle. As the results from this study, root planing couldn't expose the dentinal tubule and NaCl and potassium oxalate occluded exposed dentinal tubule effectively. Dentinal hypersensitivity has close relationship with the exposure of dentinal tubules, especially with it's size and number.

  • PDF

Biologic Response of Human Deciduous Dental Pulp Cells on Newly Developed MTA-like Materials (새로 개발된 MTA 유사 재료에 대한 유치 치수세포의 생물학적 반응)

  • Lee, Haewon;Shin, Yooseok;Jung, Jaeeun;Kim, Seongoh;Lee, Jaeho;Song, Jeseon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.291-301
    • /
    • 2015
  • This study compared the in vitro cell viability and differentiation potentials of human deciduous dental pulp cells (DPCs) on mineral trioxide aggregate (MTA)-like products (ProRoot MTA, RetroMTA and Endocem Zr). The experimental materials were prepared as circular discs, which were used to test the effects of the materials on the viability of human DPCs when placed in direct and indirect contact. Furthermore, the pH of the extracted materials was recorded, and their effect on cell differentiation potential was evaluated by evaluating the alkaline phosphatase (ALP) activity and Alizarin Red S staining of DPCs incubated with the test materials. In direct contact, the cell viability of human DPCs was higher with ProRoot MTA and RetroMTA than with Endocem Zr. However, when in indirect contact, the cell viability of human DPCs was generally higher in Endocem Zr than in ProRoot MTA and Retro MTA. With respect to pH, the alkalinity was lower for Endocem Zr than for the other test materials. The ALP activities of the cells were not enhanced by any of the experimental materials. Alizarin Red S staining of the tested human DPCs revealed that their differentiation potential was lower than for cells incubated with osteogenic induction medium. While there were differences in the responses of the human DPCs to the test materials, all displayed degrees of cytotoxicity and were unable to enhance either the viability or differentiation of human DPCs. However, Endocem Zr exhibited better cell viability and was less alkaline than the other test materials.

Effects of root nodules on the plant type in soybean-Especially internode length and petiole length on the main stem

  • Ohashi, Shuma;Kurita, Haruna;Takahashi, Yukitsugu;Nagasuga, Kiyoshi;Nagaya, Yuichi;Umezaki, Teruhisa
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.358-358
    • /
    • 2017
  • The plant type is generally one of the most important factor for crop production and be influenced by nitrogen absorption. Soybean plants have nodules in their roots, supplying nitrogen at the vegetative and reproductive stages. Root nodules seem to effect plant type of soybean plants, but there are few reports on the relation nodules and plant type. We tried to clarify the effects of root nodules on the plant type, especially internode length and petiole length, comparing non-nodule soybean with normal soybean. The pot experiment and field experiment were carried out at Mie University and Utsunomiya University in 2015 and 2016. Enrei, a popular cultivar in central Japan, and En1282, non-nodulating isogenic line of Enrei, were used. The petiole length on main stem was measured after defoliation and internode length and yield components were measured after harvest. In the field experiment, the patterns of the final length in internode and petiole on main stem were consistent in both cultivars, and a positive correlation was found between the Nth petiole length and the N-1th internode length, belong to the same phytomere. Therefore, the petiole and internode on the main stem make similar response for environmental factors. In pot experiment, Enrei grew with the same pattern as field experiments, but in En1282, the elongation of petiole and internode in the upper part was suppressed, especially the petiole was suppressed greatly. The main stem becomes the basis of the plant type. These results were considered that the nitrogen is distributed preferentially to the internode than the petiole. It seems that the pot cultivation restricted the rhizosphere and caused nitrogen deficiency in En1282. These results suggested that the slight nitrogen deficiency provided from the root nodules was compensated by the increase of the amount of inorganic nitrogen absorption due to the expansion of the rhizosphere, and the severe nitrogen deficiency suppressed elongation of petiole and internode. It is clear that root nodules effect the plant type by supplying nitrogen to internodes and petioles.

  • PDF

Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng

  • Oh, Ji Yeon;Kim, Yu-Jin;Jang, Moon-Gi;Joo, Sung Chul;Kwon, Woo-Saeng;Kim, Se-Yeong;Jung, Seok-Kyu;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.270-277
    • /
    • 2014
  • Background: The effect of methyl jasmonate (MJ) on ginsenoside production in different organs of ginseng (Panax ginseng Meyer) was evaluated after the whole plant was dipped in an MJ-containing solution. MJ can induce the production of antioxidant defense genes and secondary metabolites in plants. In ginseng, MJ treatment in adventitious root resulted in the increase of dammarenediol synthase expression but a decrease of cycloartenol synthase expression, thereby enhancing ginsenoside biosynthesis. Although a previous study focused on the application of MJ to affect ginsenoside production in adventitious roots, we conducted our research on entire plants by evaluating the effect of exogenous MJ on ginsenoside production with the aim of obtaining new approaches to study ginsenoside biosynthesis response to MJ in vivo. Methods: Different parts of MJ-treated ginseng plants were analyzed for ginsenoside contents (fine root, root body, epidermis, rhizome, stem, and leaf) by high-performance liquid chromatography. Results: The total ginsenoside content of the ginseng root significantly increased after 2 d of MJ treatment compared with the control not subjected to MJ. Our results revealed that MJ treatment enhances ginsenoside production not in the epidermis but in the stele of the ginseng root, implying transportation of ginsenosides from the root vasculature to the epidermis. Application of MJ enhanced protopanaxadiol (PPD)-type ginsenosides, whereas chilling treatment induced protopanaxatriol (PPT)-type ginsenosides. Conclusion: These findings indicate that the production of PPD-type and PPT-type ginsenosides is differently affected by abiotic and biotic stresses in the ginseng plant, and they might play different defense mechanism roles.

Development of Predictive Growth Model of Imitation Crab Sticks Putrefactive Bacteria Using Mathematical Quantitative Assessment Model (수학적 정량평가모델을 이용한 게맛살 부패균의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Paek, Jang-Mi;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1012-1017
    • /
    • 2005
  • Predictive growth model of putrefactive bacteria of surimi-based imitation crab in the modified surimi-based imitation crab (MIC) broth was investigated. The growth curves of putrefactive bacteria were obtained by measuring cell number in MIC broth under different conditions (Initial cell number, $1.0{\times}10^2,\;1.0{\times}10^3$ and $1.0{\times}10^4$ colony forming unit (CFU)/mL; temperature, $15^{\circ}C,\;20^{\circ}C\;and\;25^{\circ}C$) and applied them to Gompertz model. The microbial growth indicators, maximum specific growth rate constant (k), lag time (LT) and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of putrefactive bacteria was become fast with rising temperature and fastest at $25^{\circ}C$. LT and GT were become short with rising temperature and shortest at $25^{\circ}C$. There were not significant differences in k, LT and GT by initial cell number (p>0.05). Polynomial model, $k=-0.2160+0.0241T-0.0199A_0$, and square root model, $\sqrt{k}=0.02669$ (T-3.5689), were developed to express the combination effects of temperature and initial cell number, The relative coefficient of experimental k and predicted k of polynomial model was 0.87 from response surface model. The relative coefficient of experimental k and predicted k of square root model was 0.88. From above results, we found that the growth of putrefactive bacteria was mainly affected by temperature and the square root model was more credible than the polynomial model for the prediction of the growth of putrefactive bacteria.

One-Pass Identification Processing Password (한 단계로 신원확인을 위한 패스워드)

  • Kim Yong-Hun;Cho Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.627-632
    • /
    • 2005
  • Almost all network systems provide an authentication mechanism based on user ID and password. In such system, it is easy to obtain the user password using a sniffer program with illegal eavesdropping. The one-time password and challenge-response method are useful authentication schemes that protect the user passwords against eavesdropping. In client/ server environments, the one-time password scheme using time is especially useful because it solves the synchronization problem. It is the stability that is based on Square Root problem, and we would like to suggest OPI(One Pass Identification), enhancing the stability for all of the well-known attacks by now including Free-playing attack, off-line Literal attack, Server and so on. OPI does not need to create the special key to read the password. OPI is very excellent in identifying the approved person within a very short time.

An Effective Defensive Response in Thai Aromatic Rice Varieties(Oryza sativa L. spp. indica) to Salinity

  • Cha-um, Suriyan;Vejchasarn, Phanchita;Kirdmanee, Chalermpol
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.257-264
    • /
    • 2007
  • Rice is one of the world's staple crops and is a major source of carbohydrate. Rice is exported from several countries, providing a major source of income. There are many documents reporting that rice is a salt-sensitive crop in its developmental stages. The objective of this investigation is to evaluate the effective salt-tolerance defense mechanisms in aromatic rice varieties. Pathumthani 1(PT1), Jasmine(KDML105), and Homjan(HJ) aromatic rice varieties were chosen as plant materials. Rice seedlings photoautotrophically grown in-vitro were treated with 0, 85, 171, 256, 342, and 427 mM NaCl in the media. Data, including sodium ion$(Na^+)$ and potassium ion$(K^+)$ accumulation, osmolarity, chlorophyll pigment concentration, and the fresh and dry weights of seedlings were collected after salt-treatment for 5 days. $Na^+$ in salt-stressed seedlings gradually accumulated, while $K^+$ decreased, especially in the 342-427 mM NaCl salt treatments. The $Na^+$ accumulation in both salt-stressed root and leaf tissues was positively related to osmolarity, leading to chlorophyll degradation. In the case of the different rice varieties, the results showed that the HJ variety was identified as being salt-tolerant, maintaining root and shoot osmolarities as well as pigment stabilization when exposed to salt stress or $Na^+$ enrichment in the cells. On the other hand, PT1 and KDML105 varieties were classified as salt-sensitive, determined by chlorophyll degradation using Hierarchical cluster analysis. In conclusion, the HJ-salt tolerant variety should be further utilized as a parental line or genetic resource in breeding programs because of the osmoregulation defensive response to salt-stress.

  • PDF

Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent

  • Xu, Ting;Shen, Xiangfeng;Yu, Huali;Sun, Lili;Lin, Weihong;Zhang, Chunxiao
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Background: Panax ginseng root is used in traditional oriental medicine for human health. Its main active components such as saponins and polysaccharides have been widely evaluated for treating diseases, but secondary active components such as oligosaccharides have been rarely studied. This study aimed to assess the impact of water-soluble ginseng oligosaccharides (WGOS), which were isolated from the warm-water extract of Panax ginseng root, on scopolamine-induced cognitive impairment in mice and its antineuroinflammatory mechanisms. Methods: We investigated the impact of WGOS on scopolamine-induced cognitive impairment in mice by using Morris water maze and novel object recognition task. We also analyzed the impact of WGOS on scopolamine-induced inflammatory response (e.g., the hyperexpression of proinflammatory cytokines IL-$1{\beta}$ and IL-6 and astrocyte activation) by quantitative real-time polymerase chain reaction and glial fibrillary acid protein (GFAP) immunohistochemical staining. Results: WGOS pretreatment protected against scopolamine-induced learning and memory deficits in the Morris water maze and in the novel object recognition task. Furthermore, WGOS pretreatment downregulated scopolamine-induced hyperexpression of proinflammatory cytokines interleukin (IL)-$1{\beta}$ and IL-6 mRNA and astrocyte activation in the hippocampus. These results indicate that WGOS can protect against scopolamine-induced alterations in learning and memory and inflammatory response. Conclusion: Our data suggest that WGOS may be beneficial as a medicine or functional food supplement to treat disorders with cognitive deficits and increased inflammation.

The Impact of Pandemic Crises on the Synchronization of the World Capital Markets (팬데믹 위기가 세계 자본시장 동조화에 미치는 영향)

  • Lee, Dong Soo;Won, Chaehwan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.3
    • /
    • pp.183-208
    • /
    • 2022
  • Purpose - The main purpose of this study is to widely investigate the impact of recent pandemic crises on the synchronization of the world capital markets through 25 stock indices from major developed countries. Design/methodology/approach - This study collects 25 stock indices from major developed countries and the time period is between January 5, 2001 and February 24, 2022. The data sets used in the study include finance.yahoo.com and Investing.com.. The Granger causality analysis, unit-root test, VAR analysis, and forecasting error variance decomposition were hired in order to analyze the data. Findings - First, there are significant inter-relations among 25 countries around recent major pandemic crises(such as SARS, A(H1N1), MERS, and COVID19), which is consistent result with previous literature. Second, COVID19 shows much stronger impact on the world-wide synchronization than other pandemics. Third, the return volatility of each stock market varies, unit root tests show that daily stock index data are unstable while daily stock index returns are stable, and VAR(Vector Auto Regression) analyses presents significant inter-relations among 25 capital markets. Fourth, from the impulse response function analyses, we find that each market affects the other markets for short term periods, about 2~4 days, and no long term effect was not found. Fifth, Granger causality tests show one-side or two-sides synchronization between capital markets and we estimate, through forecasting error variance decomposition method, that the explanatory portions of each capital market on other markets vary from 10 to 80%. Research implications or Originality - The above results all together show that pandemic crises have strong effects on the synchronization of world capital markets and imply that these synchronizations should be carefully considered both in the investment decisions by individual investors and in the financial and economic policies by governments.