• Title/Summary/Keyword: root point

Search Result 632, Processing Time 0.041 seconds

IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM (Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도)

  • Kim, Bong-Chul;Lee, Chae-Eun;Park, Won-Se;Kang, Jeong-Wan;Yi, Choong-Kook;Lee, Sang-Hwy
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.

A FEM ANALYSIS FOR INITIAL STRESS ON THE UPPER GAMINE BY ORTHODONTIC FORCE OF INTRUSION ARCH WIRE ACTIVATION (Intrusion arch wire activation시 상악 견치에 가해진 초기응력의 유한요소법을 통한 고찰)

  • Kang, Jeong-Weon;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.391-398
    • /
    • 1998
  • The purpose of this study was to find the distribution and measurement of compressive and tensile stress when intrusi- on arch wire is forced engage with upper canine and to analysis stress at each section through FEM. And we compare compressive and tensile ratio at each section. The results were as follows. 1. At FA point and cemento-enamel junction of upper canine, compressive and tensile force ratio is about the same. 2. At apex, compressive force is the four times as tensile force. ; In intrusion, we show root resorption at apex. 3. At Cemento-enamel junction, the compressive and tensile force show the maximun value except FA Point.

  • PDF

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems (다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구)

  • Shin, Chang-Hoon;An, Seung-Hee;Lee, Jeong-Hwan;Sung, Won-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.947-955
    • /
    • 2010
  • Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.

Administration Process Extension and Public Data Convergence Management (행정 프로세스 확장에 따른 공공 데이터 융합 관리 방안)

  • Kim, Sang Wook
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.41-49
    • /
    • 2015
  • This study explores the possibility of innovative government's administrative services to the public by reflecting the social implications of 'Big Data'. In particular, the idea of OPP (Order Penetration Point) and SOP (Service Offering Point) as a management scheme for the extension of administrative processes into the resident's living space is proposed to overcome the inherent limits of e-government service quality, the root cause of which is believed in the segregation of two spaces - the resident's living space and the government's offices. Furthermore, a discussion is made on how to integrate sensor data from the resident's living space with traditional administrative database, which is a new challenge in the course of synchronizing the two spaces. The implications on the process extension are also provided centering around the shift from reactive to proactive services.

EVALUATION OF APICAL PLUG MATERIALS USED FOR THE CONTROL OF EXTRUSION OF HIGH-TEMPERATURE THERMOPLASTICIZED GUTTA-PERCHA (수종의 apical plug 재료의 근단 폐쇄성에 관한 실험적 연구)

  • Hur, Eun-Jung;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.205-216
    • /
    • 1994
  • The purpose of this study is to evaluate of apical plug materials for the contral of extrusion and sealing ability of high-temperature thermoplasticized gutta-percha in plastic root canal blocks. Seventy seven plastic blocks with canal preformed were instrumented with # 50K file 1 mm beyond apical foramen. Blocks were randomly divided into 5 groups of 15 blocks each. Group 1 was filled by high-temperature thermoplasticized gutta-percha only. The another 4 groups were placed with apical plug materials each other and then remaining space was back filled with high temperature thermoplasticized gutta-percha Apical plug materials were used as follows; Group 2: Thermoplasticized gutta-percha (Thermoplasticized gutta-percha group) Group 3 :. Calcium hydroxide powder (Calcium hydroxide group) Group 4 : Silver point (Silver point group) Group 5 : Gutta-percha cone softened by chloroform (Gutta-percha cone group) All the blocks were stored in 100 % relative humidor at room temperature for 14 days. Filling material extruded was removed carefully and then weighed in analytic balance. Each block was placed in centrifuge tube filled with India ink, and then centrifuged for 20 minutes at 3,000 rpm. Apical leakage was measured from the apical foramen to the most coronal level of dye leakage in millimeter by two examiners under a stereoscope. The data were analysed statistically by Student's t-test The obtained results were as follows; 1. The amounts of material extruded through the foramen decreased in all of groups used apical plug materials (P<0.01). 2. Silver point group and gutta-percha cone group were similar linear leakage to high-temperature thermoplasticised gutta-percha technique only (P>0..5). 3. Calcium hydroxide group and thermoplasticized gutta-percha group showed more liner leakage than high-temperature thermoplasticized gutta-percha only (P<0.01, P<0.05). 4. High-temperature thermoplasticized gutta-percha technique with silver point and gutta-percha cone as apical plugs showed less linear leakage and less extrusion of filling material.

  • PDF

Noncontact measurements of the morphological phenotypes of sorghum using 3D LiDAR point cloud

  • Eun-Sung, Park;Ajay Patel, Kumar;Muhammad Akbar Andi, Arief;Rahul, Joshi;Hongseok, Lee;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.483-493
    • /
    • 2022
  • It is important to improve the efficiency of plant breeding and crop yield to fulfill increasing food demands. In plant phenotyping studies, the capability to correlate morphological traits such as plant height, stem diameter, leaf length, leaf width, leaf angle and size of panicle of the plants has an important role. However, manual phenotyping of plants is prone to human errors and is labor intensive and time-consuming. Hence, it is important to develop techniques that measure plant phenotypic traits accurately and rapidly. The aim of this study was to determine the feasibility of point cloud data based on a 3D light detection and ranging (LiDAR) system for plant phenotyping. The obtained results were then verified through manually acquired data from the sorghum samples. This study measured the plant height, plant crown diameter and the panicle height and diameter. The R2 of each trait was 0.83, 0.94, 0.90, and 0.90, and the root mean square error (RMSE) was 6.8 cm, 1.82 cm, 5.7 mm, and 7.8 mm, respectively. The results showed good correlation between the point cloud data and manually acquired data for plant phenotyping. The results indicate that the 3D LiDAR system has potential to measure the phenotypes of sorghum in a rapid and accurate way.

Measurements and Data Processing for Blast Vibrations and Air-blasts (발파진동 및 발파소음의 측정 및 자료처리)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.29-50
    • /
    • 2015
  • Safe blast criteria based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of blast vibrations. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). In contrast to SRSD scheme, however, the function of maximum charge per delay for CRSD increases without bound after the intersection point of these two functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, it is suggested that CRSD be used within a specified distance slightly beyond the intersection point. On the other hand, there are several attempts that predict vibration level(VL) from the peak particle velocity(PPV) or estimate VL based on the scaled distances without considering their frequency spectra. It appears that these attempts are conducted in blasting contracts only for the purpose of satisfying the environment-related law, which mainly deals with the annoyance aspects of noises and vibrations in human life. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only between the waves with the same or very similar frequency spectra. Finally, it is a known fact that structural damage due to ground vibration is related to PPV level, the safety level criteria for structures should be defined by allowable PPV levels together with their zero crossing frequencies (ZCF).

Generation of the KOMPSAT-2 Ortho Mosaic Imagery on the Korean Peninsula (아리랑위성 2호 한반도 정사모자이크영상 제작)

  • Lee, Kwang-Jae;Yyn, Hee-Cheon;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.103-114
    • /
    • 2013
  • In this study, we established the ortho mosaic imagery on the Korean Peninsula using KOMPSAT-2 images and conducted an accuracy assessment. Rational Polynomial Coefficient(RPC) modeling results were mostly less than 2 pixels except for mountainous regions which was difficult to select a Ground Control Point(GCP). Digital Elevation Model(DEM) which was made using the digital topographic map on the scale of 1:5,000 was used for generating an ortho image. In the case of inaccessible area, the Shuttle Radar Topography Mission(SRTM) DEM was used. Meanwhile, the ortho mosaic image of the Korean Peninsula was produced by each ortho image aggregation and color adjustment. An accuracy analysis for the mosaic image was conducted about a 1m color fusion image. In order to verify a geolocation accuracy, 813 check points which were acquired by field survey in South Korea were used. We found that the maximum error was not to exceed 5m(Root Mean Square Error : RMSE). On the other hand, in the case of inaccessible area, the extracted check points from a reference image were used for accuracy analysis. Approximately 69% of the image has a positional accuracy of less than 3m(RMSE). We found that the seam-line accuracy among neighboring image was very high through visual inspection. However, there were a discrepancy with 1 to 2 pixels at some mountainous regions.

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Development of a Practical Algorithm for en-route distance calculation (항로거리 산출을 위한 실용 알고리즘 개발)

  • GeonHwan Park;HyeJin Hong;JaeWoo Park;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2022
  • The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.