• Title/Summary/Keyword: root gravitropism

Search Result 12, Processing Time 0.021 seconds

Ca2+ Regulators affect the Gravitropism and Ethylene Production Induced by Malformin A1 in Maize Root (옥수수 뿌리에서 칼슘 이온 조절제가 malformin A1에 의해 유도된 굴중성과 에틸렌 생합성에 미치는 영향)

  • Hong, Sung-Hyun;Oh, Seung-Eun;Kim, Kun-Woo;Jeong, Hyung-Jin;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.174-178
    • /
    • 2007
  • Treatment of malformin A1 is known to increase ethylene production 130% at 4 hr and 56% at 8 hr after treatment in maize root compared to untreated plants. The ethylene production by malformin A1 was maximum level at 4 hr and slowly decreased up to 8 hr. Calcium ion regulators such as A23187 (calcium ionophore) and verapamil (calcium channel blocker) stimulated ethylene production. Treatment of both calcium ion regulators increased about 30% of ethylene production at 4 hr, and 20% at 8 hr. Both calcium ion regulators did not stimulate malformin A1-induced ethylene production at 4 hr as malformin A1 itself did. However, the treatment of calcium ion regulators with malformin A1 maintains the ethylene production for 8 hr. These results suggested that the proper concentration of calcium might need to confer the effect of malformin A1 on the ethylene production. Malformin A1 suppressed the gravitropic curvature of maize root about 58% at 4 hr and 42% at 8 hr compared to control plant. Verapamil inhibited the gravitropic curvature about 54% at 4 hr and 23% at 8 hr compared to control, respectively. But A23187 could not. In addition, verapamil showed more inhibition in malformin A1-induced gravitropic curvature than A23187 in malformin A1 induced. These data suggested that calcium ion regulators affect the malformin A1-induced ethylene production and gravitropic curvature, and give the evidence that calcium ion play an important role in gravitropic curvature in maize root.

The Effect of Oryzalin on Growth and Gravitropism in Arabidopsis Roots (Oryzalin이 애기장대 뿌리 생장과 굴중성 반응에 미치는 작용)

  • Go, Jin Gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • Oryzalin is a dinitroaniline herbicide that has been known to disrupt microtubules. Microtubules and microfilaments are components of cytoskeletons that are implicated in plant cell growth, which requires the synthesis of cellulose when cell walls elongate. In addition, microtubules are also involved in the sedimentation of statoliths, which regulate the perception of gravity in the columella cells of root tips. In this study, we investigated the effect of oryzalin on the growth and gravitropic response of Arabidopsis roots. The role of ethylene in oryzalin's effect was also examined using these roots. Treatment of oryzalin at a concentration of 10-4 M completely inhibited the roots' growth and gravitropic response. At a concentration of 10-6 M oryzalin, root growth was inhibited by 47% at 8 hr when compared to control. Gravitropic response was inhibited by about 38% compared to control in roots treated with 10-6 M oryzalin for 4 hr. To understand the role of oryzalin in the regulation of root growth and gravitropic response, we measured ethylene production in root segments treated with oryzalin. It was found that the addition of oryzalin stimulated ethylene production through the activation of ACC oxidase and ACC synthase genes, which are key components in the synthesis of ethylene. From these findings, it can be inferred that oryzalin inhibits the growth and gravitropic response of Arabidopsis roots by stimulating ethylene production. The increased ethylene alters the arrangement of the microtubules, which eventually interferes with the growth of the cell wall.