• Title/Summary/Keyword: root axis,

Search Result 185, Processing Time 0.024 seconds

Cortical and cancellous bone thickness on the anterior region of alveolar bone in Korean: a study of dentate human cadavers

  • Kim, Heung-Joong;Yu, Sun-Kyoung;Lee, Myoung-Hwa;Lee, Hoon-Jae;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.146-152
    • /
    • 2012
  • PURPOSE. The cortical bone thickness on the anterior region is important for achieving implant stability. The purpose of this study was to examine the thickness of the cortical and cancellous bones on the anterior region of the maxilla and mandible. MATERIALS AND METHODS. Twenty-five cadaver heads were used (16 male and 9 female; mean death age, 56.7 years). After the long axis of alveolar process was set up, it was measured in 5 levels starting from 2 mm below the cementoenamel junction (L1) at intervals of 3 mm. All data was analysed statistically by one-way ANOVA at the .05 significance level. RESULTS. The cortical bone thickness according to measurement levels in both the labial and lingual sides increased from L1 to L5, and the lingual side below L3 was significantly thicker than the labial side on the maxilla and mandible. In particular, the labial cortical bone thickness in the maxilla was the thinnest compared to the other regions. The cancellous bone thickness according to measurement levels increased from L1 to L5 on the maxilla, and on the mandible it was the thinnest at the middle level of the root. CONCLUSION. For implant placement on the anterior region, a careful evaluation and full knowledge on the thickness of the cortical and cancellous bone are necessary, therefore, these results may provide an anatomic guideline to clinicians.

A Study on the 1MW Horizontal Axis Wind Turbine Rotor Design and 3D Numerical Analysis by CFD (CFD에 의한 1MW 수평축 풍력발전용 로터 설계 및 해석에 관한 연구)

  • Kim, B. S.;Kim, Y. T.;NAM, C. D.;Kim, J. G.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.396-401
    • /
    • 2004
  • In this paper, a 1MW HAWT(FIL-1000) rotor blade has been designed by BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. Also, a 3-D flow and performance analysis on the FIL-1000 rotor blade has been carried out by using the 3-D Navier-Stokes commercial solver (CFX-5.7) to provide more efficient design techniques to the large-scale HAWT engineers. The rated power and itsapproaching wind velocity at design point (TSR=7.5) are 1MW and 9.99m/s respectively. The rotor diameter is 54.5m and the rotating speed is 26.28rpm. Airfoils such as FFA W-301, DU91-W-250, DU93-W-210, NACA 63418, NACA 63415 consist of the rotor blade from hub to tip. Recent CFX version, 5.7 was adopted to simulate 3-D flow field and to analyze the performance characteristics of the rotor blade. Entire mesh node number is about 730,000 and it is generated by ICEM-CFD to achieve better mesh quality The predicted maximum power occurringat the design tip speed ratio is 931.45kW. Approaching to the root, the inflow angle becomes large, which causesthe blade to be stalled in the region. Therefore, k-$\omega$ SST turbulence model was used to predict the quantitative flow information more accurately. Application of commercial CFD code to optimum blade design and performance analysis was proved to be more effective environment to HAWT blade designers.

  • PDF

Study on the Ultrastructural Characteristics of Human Hair Medulla (인체 두피 모발에서 수질의 미세구조적 특성에 관한 연구)

  • Chang, Byung-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.123-129
    • /
    • 2017
  • Morphological and ultrastructural characteristics of human hair medulla was investigated with scanning electron microscopy and transmission electron microscopy. The medulla is located in the central position of hair shaft and appear greatly variable forms which discontinuous shape arranged from hair root to apical portion according to longitudinal axis. The thickness of medulla from a single hair presented as very variable in size. The diameter of cross section of human hair medulla measured as $21{\mu}m$ and longitudinal section showed $27{\mu}m$. It grows up to 1/3 from 1/4 in diameter of human hair shaft. It appears emptied hole during separating of macrofibrils in the keratinocyte. The empty space measured $6.5{\mu}m$ in diameter as maximum size and it was filled with air.

pH Changes in the Rhizosphere Soil of Pokeberry (미국자리공의 근권 토양산성도의 변화)

  • 박용목;박범진;최기룡
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 1999
  • The measurement of pH in the rhizosphere soil was conducted to clarify whether the growth of pokeberry plants affect the acidity of rhizosphere soil in two environmentally contrasting area Ulsan and Chongju city. The rhizosphere pH between 5.25 and 5.33 was shown in the pokeberry stand at Mt. Boomo located at Chongju. The rhizosphere pH of pokeberry stands at Mt. Bongdae, Mt. Sinsun and Mt. Totchil was below 5.0, and did not differ with depth and distance from the main axis of root. At Mt. Bongdae, however, the pH in the rhizosphere soil was significantly changed with soil depths though that was not changed horizontally. The rhizosphere pH at top soil was lower than that at subsoil, which indicates the fact that soil acidification at Mt. Bongdae was not caused by pokeberry plants. Furthermore, the rhizosphere pH did not change with the growth of pokeberry plants. These results indicate that the hypothesis that pokeberry plants acidify local soil environment should be reconsidered.

  • PDF

Age Difference in the Cephalad Attenuation of Upper Body Accelerations During Fast Speed Walking (빠른 보행시 상체 가속도의 머리 방향 감쇄의 연령차)

  • Jeon, Hyeong-Min;Kim, Ji-Won;Kwon, Yu-Ri;Heo, Jae-Hoon;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.349-353
    • /
    • 2016
  • The purpose of this study was to investigate possible age differences in the attenuation of acceleration in the upper body (from pelvis through shoulder to head) during fast walking. Thirty young and 29 elderly subjects participated in this study. Wireless acceleration sensors were attached on head, shoulder, and pelvis. Subjects performed two trials of fast walking on a treadmill, where the fast speed was defined as 1.5 times of the comfortable speed. Root-mean-squared (RMS) accelerations of each axis were compared with age group and sensor position as independent factors. In the AP direction, the pelvis acceleration was greater in the young and the shoulder-to-head attenuation was also greater in the young (p<0.001), so that the head acceleration was comparable between age groups (p=0.581). In the ML direction, the pelvis acceleration was greater in the young and also the pelvis-to-shoulder attenuation was greater in the young (p<0.001), so that the head acceleration was greater in the elderly group (p<0.001). Insufficient attenuation ML acceleration in the elderly resulting in the greater acceleration in the head may deteriorate the balance control which utilize feedback signals from the sensory organs in head, e.g., vestibular and visual systems.

Effect of Disturbance Modeling on IMMU-Based Orientation Estimation Accuracy (교란성분 모델링이 IMMU기반 자세추정 정확성에 미치는 영향)

  • Choi, Mi Jin;Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.783-789
    • /
    • 2017
  • In terms of 3D orientation estimation based on nine-axis IMMU(inertial and magnetic measurement unit), there are two disturbance components decreasing estimation accuracy: one is external acceleration disturbing accelerometer's signals and the other is magnetic disturbance related to magnetometer's signals. In order to minimize effects by these two disturbances, two approaches including switching approach and model-based approach have been suggested and further research comparing these two has also been conducted. Nevertheless, effect of disturbance modeling differences on orientation estimation accuracy in model-based approach has not been studied before. This paper compares the recently reported two orientation estimation algorithms that have difference in disturbance models, in order to investigate the effect of disturbance models on accuracy of IMMU-based orientation estimation under various operating conditions. This research shows that the difference in disturbance models leads to difference in process noise covariance matrix. Consequently, this affected the orientation estimation, i.e., the estimation differences between the algorithms were root mean square errors of $1.35^{\circ}$ in average and $3.63^{\circ}$ in yaw estimation.

Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

  • Chaudhary, Dhanjee Kumar;Bhattacherjee, Ashis;Patra, Aditya Kumar;Chau, Nearkasen
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.268-278
    • /
    • 2015
  • Background: This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods: The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration ($m/s^2$)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results: More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient ${\beta}=-0.052$, standard error SE = 0.023), manufacturer (${\beta}=1.093$, SE = 0.227), rock hardness (${\beta}=0.045$, SE = 0.018), uniaxial compressive strength (${\beta}=0.027$, SE = 0.009), and density (${\beta}=-1.135$, SE = 0.235). Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

A Experimental Study of Aerodynamic Interference on Quad-Tilt Propeller UAV Wings in Forward Flight Condition (전진 비행하는 Quad-Tilt Propeller 형상 무인기 날개에서 나타나는 공력간섭 현상에 대한 실험적 연구)

  • Kim, Taewoo;Chung, Jindeog;Kim, Yangwon;Park, Cheolwan;Cho, Taehwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.81-89
    • /
    • 2019
  • In this study, wind tunnel test on Quad-Tilt Propeller which has tandem wings is carried out to analyze the aerodynamic interference effect of front wing and propeller on rear wing during forward flight. Using 6-axis balance system, forces and moments of whole aircraft were measured and using strain gauge at wing root, bending moments were measured to observe change of aerodynamic force of each wings. A 12-hole probe was used to measure the flow field in the wing and propeller wake. Flow characteristics were observed qualitatively through flow visualization experiment using tuft and smoke. To measure the aerodynamic interference by elements, the influence of front wing and propeller on rear wing was analyzed by changing the wings and propellers mount combination.

Influence of thickness and incisal extension of indirect veneers on the biomechanical behavior of maxillary canine teeth

  • Costa, Victoria Luswarghi Souza;Tribst, Joao Paulo Mendes;Uemura, Eduardo Shigueyuki;de Morais, Dayana Campanelli;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.48.1-48.13
    • /
    • 2018
  • Objectives: To analyze the influence of thickness and incisal extension of indirect veneers on the stress and strain generated in maxillary canine teeth. Materials and Methods: A 3-dimensional maxillary canine model was validated with an in vitro strain gauge and exported to computer-assisted engineering software. Materials were considered homogeneous, isotropic, and elastic. Each canine tooth was then subjected to a 0.3 and 0.8 mm reduction on the facial surface, in preparations with and without incisal covering, and restored with a lithium disilicate veneer. A 50 N load was applied at $45^{\circ}$ to the long axis of the tooth, on the incisal third of the palatal surface of the crown. Results: The results showed a mean of $218.16{\mu}strain$ of stress in the in vitro experiment, and $210.63{\mu}strain$ in finite element analysis (FEA). The stress concentration on prepared teeth was higher at the palatal root surface, with a mean value of 11.02 MPa and varying less than 3% between the preparation designs. The veneers concentrated higher stresses at the incisal third of the facial surface, with a mean of 3.88 MPa and a 40% increase in less-thick veneers. The incisal cover generated a new stress concentration area, with values over 48.18 MPa. Conclusions: The mathematical model for a maxillary canine tooth was validated using FEA. The thickness (0.3 or 0.8 mm) and the incisal covering showed no difference for the tooth structure. However, the incisal covering was harmful for the veneer, of which the greatest thickness was beneficial.

A Preliminary study of Biomechanical Behavior of High-Performance Polymer Post-Core System (고성능 폴리머 재질의 포스트-코어 시스템의 생역학적 거동에 대한 예비실험)

  • Lee, Ki-Sun;Kim, Jong-Eun;Kim, Jee-Hwan;Lee, Jeong-Yol;Shin, Sang-Wan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of $45^{\circ}$ to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.