• Title/Summary/Keyword: roof systems

Search Result 216, Processing Time 0.023 seconds

A Study on the transformation Pross of Vernacular Houses in Ulleung-Island -Focused on wall, roof, window and ceiling- (울릉도 민가의 변화과정에 관한 연구 -벽체, 지붕, 창호, 천장을 중심으로-)

  • Kim Chan-Yeong
    • Journal of the Korean housing association
    • /
    • v.15 no.5
    • /
    • pp.85-96
    • /
    • 2004
  • The purpose of this study was to (md out the characteristics of the residential house in Ulleung Island in terms of building materials, structure and construction method, structural design by actual field surveys. This study found several facts; First, the house was classified into the log house and mud-wall house according to building material for wall structure. The log house prevailed in the early days of the settlement in the island because of affulent timber materials available around. However, the mud wall house became a popular type in later days because of the depletion of timber materials. Second, the Udeki wall was an unique installation reflecting the severe climate conditions of Ulleung Island. However, many aspects of the Udeki wall was changed according to the change of living style and the introduction of modem heating systems in terms of its function, size, building material, layout position etc. Third, the roofing material also has been changed from materials available locally to slate materials transported from the mainland. Fourth, the bamboo slender-ribbed door as a single-swing door type was popular and later time the single-sliding door or three ribbed door was widely used in rooms installed later instead. Fifth, the roof was placed over the room, kitchen, and Chukdam (outer wall) and this was a resonable way to cope with heavy snowfalls in the winter season in Ulleung Island.

Critical Factors Affecting Rooftop Solar System Investment: An Empirical Study in Vietnam

  • THAN, Duong Thuy Thi;BUI, Tuan Quang;DUONG, Kien Trung;BUI, Tu Ngoc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.201-211
    • /
    • 2022
  • The economic development of most countries in the world has negatively impacted fossil energy resources. Fossil energy sources such as petroleum and coal are increasingly depleted. When energy sources are exhausted, renewable energy sources are growing strongly. Renewable energy development can help to replace diminishing fossil fuels. Furthermore, the usage of renewable energy can contribute to a green economy and sustainable development by protecting the environment. Solar power on the roof is one of the many renewable energy sources available. But at present, the investment in roof voltage systems has not developed strongly in Vietnam. This paper uses the SEM model to evaluate the factors affecting investment in rooftop solar power in some provinces of Vietnam. The article uses the household interview method. The article has given 8 factors affecting the decision to invest in rooftop solar power for households. Research results show that most of the factor variables have a positive impact on the decision to invest in rooftop solar power. Based on assessing the factors affecting the decision to invest in rooftop solar power, the article will provide conclusions and policy suggestions to increase investment in rooftop solar power in Vietnam.

The structural behavior of lightweight concrete buildings under seismic effects

  • Yasser A.S Gamal;Mostafa Abd Elrazek
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.315-335
    • /
    • 2023
  • The building sector has seen a huge increase in the use of lightweight concrete recently, which might result in saving in both cost and time. As a result, the study has been done on various types of concrete, including lightweight (LC), heavyweight (HC), and ordinary concrete (OC), to understand how they react to earthquake loads. The comparisons between their responses have also been taken into account in order to acquire the optimal reaction for various materials in building work. The findings demonstrate that LWC building models are more earthquake-resistant than the other varieties due to the reduction in building weight which can be a curial factor in the resistance of earthquake forces. Another crucial factor that was taken into study is the combination of various types of concrete [HC, LC, and OC] in the structural components. On the other hand, the bending moments and shear forces of LC had reduced to 17% and 19%, respectively, when compared to OC. Otherwise, the bending moment and shear force demand responses in the HC model reach their maximum values by more than 34% compared to the reference model OC. In addition, the results show that the LCC-OCR (light concrete column and ordinary concrete roof) and OCC-LCR (ordinary concrete for the column and light concrete for the roof) models' responses have fewer values than the other types.

Effectiveness of design procedures for linear TMD installed on inelastic structures under pulse-like ground motion

  • Quaranta, Giuseppe;Mollaioli, Fabrizio;Monti, Giorgio
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.239-260
    • /
    • 2016
  • Tuned mass dampers (TMDs) have been frequently proposed to mitigate the detrimental effects of dynamic loadings in structural systems. The effectiveness of this protection strategy has been demonstrated for wind-induced vibrations and, to some extent, for seismic loadings. Within this framework, recent numerical studies have shown that beneficial effects can be achieved by placing a linear TMD on the roof of linear elastic structural systems subjected to pulse-like ground motions. Motivated by these positive outcomes, closed-form design formulations have been also proposed to optimize the device's parameters. For structural systems that undergo a near-fault pulse-like ground motion, however, it is unlikely that their dynamic response be linear elastic. Hence, it is very important to understand whether such strategy is effective for inelastic structural systems. In order to provide new useful insights about this issue, the paper presents statistical results obtained from a numerical study conducted for three shear-type hysteretic (softening-type) systems having 4, 8 and 16 stories equipped with a linear elastic TMD. The effectiveness of two design procedures is discussed by examining the performances of the protected systems subjected to 124 natural pulse-like earthquakes.

Design of Green Community Rediscovery Center with Community Gardens and Social Integration Functions (공동체정원과 사회통합기능이 있는 Green Community Rediscovery Center의 설계)

  • Lee, Eung-Jik;Lee, Hyung-Sook;Yoon, Eun-Ju;Ekpeghere, Kalu I.;Koh, Sung-Cheol
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • The aim of this study was to study the functions and roles of Green Community Rediscovery Center (GCRC) in terms of community integration, to design GCRC with various types of green roofs, and to investigate the possibility of applying a renewable energy system (e.g., PV) to the building greenery systems. The four major functional modules for GCRC were suggested: implementation of ecopark and community gardens with environmental education programs, implementation of green housing model with education programs, Discover Science Center, and implementation of green business model with education programs. Three major functions of the center are also presented in terms of design: 1) functions of community gardens; 2) establishment of a green business model, community composting system and an urban farming system; and 3) roles of community gardens in social interactions within GCRC. GCRC provides residents with the opportunities of community gardens, urban farming based on a successful recycling system, as well as a green business model and environmental education programs near their homes. The air temperature of the green roof (utilizing Sedum sarmentosum as a cover plant) was approximately $3^{\circ}C$ lower than that of the non-green roof, indicating a potential efficiency increase in PV systems for GCRC. It was concluded that the GCRC suggested would enhance the neighborhood satisfaction, improve the quality of life and contribute to social integration and community regeneration.

Balcony window style photo-voltaic(PV) system design by considering resident's residential time rate - Focus on the design of apartment building balcony window PV system and it's performance - (거주자 주택 점유율을 고려한 공동주택 발코니 PV시스템 디자인 - 공동주택의 발코니 PV시스템 디자인과 성능검증 중심으로 -)

  • Chin, Kyung-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.5
    • /
    • pp.101-110
    • /
    • 2009
  • In case of general residential house, photovoltaic can be installed at roof, wall, and any other places. But, in case of apartment building, there has not enough roof space to install photovoltaic panels to supply enough electricity. Actually, apartment building roof and facade wall (exclude the balcony window space) is not enough space to produce and supply the electricity to residents by installing PV panel. Generally, the space of facade balcony with windows in facade wall at apartment building occupied about $70{\sim}80%$, in all facade space. So, if we could use the balcony and windows space in facade as PV to generating electricity, there could contribute the energy saying. But, PV cell is opacify. So if it installed at front window area in apartment building, residents may have displeasure for that opacity character. But the other hand, residents are not always in house especially in day time that is exactly good time for generating electricity by PV. If we can use PV at the facade balcony with window without collusion of resident's displeasure, there have good attraction to using sustainable energy. Hence, this study suggests the design of facade balcony window style PV by considering resident's living pattern in apartment building. The methods of this study are as follows. At first, this study surveyed to the residents about residential time in their home and asked user demand by Delphi survey. At second, this study designed balcony open style PV system which oriented to the user demand. At third, this study tests designed result performance by computer simulation that compared design result with old design. As a result, For the purpose of satisfying the resident demand, there designed sliding window style which slide the several door systems to the one side. That would be make balcony absolute open scenery to the residents. Hence, the designed system performance results were as follows. When we compare the small apartment and large apartment, smaller one has good performance than larger one. Because resident's residential time characteristic. And that has more good electronic performance than vertical style that is similar to roof style.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

Simulation of the Kitchen and Bathroom Exhaust Systems in High-Rise Apartment Buildings (고층 아파트의 주방 및 욕실 배기 시스템 시뮬레이션)

  • 김영돈;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.996-1006
    • /
    • 2003
  • The objective of this study is to find major variables which influence the performance of kitchen and bathroom exhaust systems in high-rise apartment buildings. For this purpose, the influencing factors on the exhaust airflow rates from the kitchen or bathroom are identified and in every cases, which are made of combinations between the influencing factors, the exhaust airflow rates are calculated through the simulations. The results of the simulation show that the exhaust airflow rates from the kitchen and bathroom mainly depends on outdoor air temperature, number of floors, airtightness of the building envelope, fan on ratio, vertically connected to same shaft, exhaust fan capacity for kitchen or bathroom, roof ventilator capacity and shaft area for kitchen or bathroom exhaust.

Anti-swing and position control of crane using fuzzy controller (퍼지제어기를 이용한 크레인의 진동억제 및 위치제어)

  • Jeong, Seung-Hyun;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.435-442
    • /
    • 1997
  • The roof crane system is used for transporting a variable load to a target position. The goal of crane control system is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid tansportation is required. In this paper, we developed a simple fuzzy controller which has been introduced expert's knowledge base for anti-swing and rapid tranportation to goal position. In particular, we proposed the synthesis reasoning method which synthesizes on the basis of expert knowledge of the angle control input and position control input which are inferenced parallel and simultaneously. And we confirmed that the performance of the developed controller is effective as a result of applying it to crane simulator and also verified whether the proposed synthesis rules have been applied correctly using clustering algorithm from the measured data.

  • PDF

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.