• Title/Summary/Keyword: roof control

Search Result 272, Processing Time 0.026 seconds

Field Survey and Analysis of Natural Ventilation Characteristics of Multi-span Greenhouse with Different Roof Vent (연동형 비닐하우스의 환기창 형태 조사 및 자연환기 효과 분석)

  • Park, Min jung;Choi, Duck kyu;Son, Jin kwan;Yoon, Sung-Wook;Kim, Hee tae;Lee, Seung-Kee;Kang, Dong hyeon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • The objectives of this study were to investigate the standard and roof vent type of multi-span greenhouse and to analyze the characteristics of natural ventilation of multi-span greenhouse with different roof vent using computational fluid dynamics (CFD) code. The vent area proportion of surveyed farms averaged 10%, it was analyzed that the vent design for natural ventilation is insufficient. The results of natural ventilation efficiency of multi-span greenhouse according to roof vent type showed that the temperature of the position in which the crops grew was the lowest in the conical roof vent type and the highest in the half conical roof vent type. For the natural ventilation effect, the conical roof vent type was the best one, but the structural stability should be evaluated in light of wind load.

Thermal and Ventilative Characteristics of Single-Span Oak Mushroom Production Facility as Affected by Area of Roof Opening and Shading Rates (단동 표고재배시설의 천창면적과 차광율에 따른 온도 및 환기특성)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.120-126
    • /
    • 2000
  • The quality of oak mushoom(Lentinus edodes(Berk) Sing) is sensitively affected by environmental factors, especially moisture by the rain during the growing period. To protect mushrooms from being wet, plastic-covered facilities with side openings are mostly being used. However, the indoor temperature and humidity f the facility without roof opening become higher due to its poor ventilation, and consequently reduce the productivity and quality as well. In this study, we analyzed the ventilation rates and indoor temperatures of improved facilities as affected by the area of roof opening and shading rate by the model. The indoor temperature decreased by more than 2.5$^{\circ}C$ as the shading rate increased from 50% to 90%, and especially the effect of wind speed on indoor temperature was significantly great under as low as 50% of shading rate. The ventilation rate became higher under wind speed of 1~2m.s-1 regardless of the shading rate. As the wind speed increased from 0m.s-1 to 2m.s-1, the indoor temperature decreased by more than 2.$0^{\circ}C$. Moreover, the indoor temperature became lower with increasing roof opening ratio, but showed no significant differences at more than 50% of roof opening ratio. At lower shading rate, the indoor temperature sensitively decreased with increasing area of roof opening. Additionally, we obtained the higher ventilation performance with the area of roof opening more or less equal to side opening, regardless of the wind speed and shading rate.

  • PDF

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Air dome inner pressure control system

  • Miki, Norihisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.727-730
    • /
    • 1989
  • Tokyo dome is Japan's first air dome. The roof of the dome is supported by air pressure. The centralized control system (YOKOGAWA's DCS : CENTUM and YEWPACK) is applied to automatically regurate the air pressure. The control system acquires signals from sensors positioned throughout the stadium and operate 36 fans to blow air into the dome. Great emphasis is placed on the reliability and safety of the system.

  • PDF

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

A Study on the Analysis of Temperature Reduction Effect by the Types and Public Awareness of the Green Roof (옥상녹화의 녹화유형별 기온저감효과 및 시민의식 분석)

  • Lee, Chun-Woo;Kim, Soo-Bong;Moon, Hye-Shick;Jeon, Eun-Jeong
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.316-320
    • /
    • 2009
  • Recently, concerns about conserving proper size of urban green spaces and accessibility are increasing, regarding it as a solution to diverse urban environmental problems including pollution, ecosystem deterioration, urban climate change. Artificial ground greening such as green roofs is regarded as the only alternative that can conserve green spaces which are impossible to be secured on the ground. However, green roofs are not popularized yet and levels are very low in provincial cities despite of related technology development and support systems of related agencies. Based on the background, this study tries to present a theoretical basis of methods for green roofs, conducting green roof simulations and collecting ideas about problems and improving measures from green roof users. Finally, it aims to offer base data which help establish policy direction for activation of green roof technology. As a result of a simulation for verifying temperature reduction effect, it was possible to affirm effect of a plot that green roofs applied. Especially, it was revealed that a green roof method using ground covers such as mixed planting was the most effective way to reduce temperature. Activation methods for green roofs based on this study are as follows: First, it is a priority to readjust systems related to green roofs. Second, citizens' active and voluntary participation must be attained. Third, it is required to establish detailed promotion procedures which aim at actual conduct and to maintain an expert department which is able to manage and control the establishment. After conduct, continuous aftercare stages are also needed.

  • PDF

A Study on Evaluation of the Ability to Reduce Stormwater Runoff of Blue-Green Roof for Flood Damage Reduction (홍수피해 저감을 위한 Blue-Green Roof의 강우유출량 저감 능력 평가에 관한 연구)

  • Seung Won Lee;Jihoon Seo;Sung Min Cha
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.30-37
    • /
    • 2023
  • This study aimed to evaluate the ability to reduce flood damage caused by abnormal rainfall events due to climate change by utilizing a blue-green roof (BGF), a type of rooftop greening technology. For two buildings with the same roof area, a BGF was installed in the experimental group, a general roof was configured in the control group, and rainfall runoff was compared. A total of 10 rainfall events were tested and analyzed by classifying them into three rainfall classes (less than 10 mm, less than 100 mm, and more than 100 mm). There was a reduction of 100% in the case of 10 mm or less of rainfall, 84. 7% in the case of 100 mm or less, and 39.8% in the case of 100 mm or more. Although this study showed that a BGF was effective in reducing rainfall runoff, additional experiments and analyses of various factors affecting rainfall runoff reduction are needed to generalize the results of the study. This research methodology may be used to develop a method for evaluating the resilience of a BGF to flood damage due to climate change.

A Study on the Control of the Temperature and Relative Humidity in Greenhouse by Adjusting the Amount of Natural Ventilation and Fog Spray Quantity (자연환기량과 포그분무량 조절에 의한 온실 온습도의 동시제어 기법 연구)

  • Kim, Youngbok;Sung, Hyunsoo;Hwang, Seungjae;Kim, Hyeontae;Ryu, Chanseok
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.31-50
    • /
    • 2016
  • To develope a greenhouse fog cooling system to control the temperature and relative humidity simultaneously to the target value, a theoretical analysis and experiments were done. The control process includes the measuring of environmental variables, setting and coding of the water and heat balance equations to maintain the target temperature and relative humidity in greenhouse, calculating of the open level of the greenhouse roof window that governs the natural ventilation and spray water quantity, and operating of the motor to open/close the roof window and pump to spray for water. The study results were shown to be very good because the average air temperature in the greenhouse was kept to be about $28.2^{\circ}C$ with the standard deviation of about $0.37^{\circ}C$ compared to the target temperature of $28^{\circ}C$ and the average relative humidity was about 75.2% compared to the target relative humidity was 75% during the experiments. The average outside relative humidity was about 41.0% and the average outside temperature was $27.2^{\circ}C$ with the standard deviation of about $0.54^{\circ}C$. The average solar intensity in the greenhouse was 712.9 W. The wind velocity of outside greenhouse was 0.558 m/s with the standard deviation of 0.46 m/s.

Extracting roof edges of specular polyhedra (경면 다면체의 모서리 추출)

  • 박원식;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.379-382
    • /
    • 1997
  • This paper introduces a new vision technique for extracting roof edges of polyhedra having specularly reflecting surfaces. There have been many previous works on object recognition using edge information. But they can not be applied to specular objects since it is hard to acquire reliable camera images of specular objects. If there is a method which can extract the edges of specular objects, it is possible to apply edge-based recognition algorithms to specular objects. To acquire the reliable edge images of specular objects, scanned double pass retroreflection method is proposed, whose main physical characteristic is curvature-sensitive. This utility of the physical characteristic is motivated by the idea that roof edges can be characterized as local surfaces of high curvature. In this paper, the optical characteristics of double pass retroreflection are discussed and a series of simulation studies are performed to verify and analyze the sensor characteristics. The results from a series of simulations show the effectiveness of the proposed method.

  • PDF

Growth of Grass and Control of temperature of Planting Concrete for Roof Using Recycled Aggregate (재생골재를 이용한 옥상식재용 콘크리트의 잔디생육과 열환경조정효과)

  • 이상태;김정진;황정하;김진선;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.237-242
    • /
    • 2001
  • The objective of this study is to investigate growth of grass planted with planting concrete using recycled aggregste. Planting concrete blocks are constructed on the roof of existing building. Temperature variation according to planting concrete method are also investigate. According to test results, it shows that grass grows very well under planting concrete method. When planting concrete method is applied, it brings about temperature reducing effects about 1~$2^{\circ}C$ at inner part of the buildings at cooling required period compared to that with existing roof, and at heating required period temperature insulating effects about 2~$4^{\circ}C$.

  • PDF