• Title/Summary/Keyword: roof control

Search Result 272, Processing Time 0.032 seconds

Experimental Evaluation of Seismic Response Control Performance of Smart TMD (스마트 TMD의 지진응답 제어성능 실험적 검토)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.49-56
    • /
    • 2022
  • Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.

A semi-active mass damping system for low- and mid-rise buildings

  • Lin, Pei-Yang;Lin, Tzu-Kang;Hwang, Jenn-Shin
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.63-84
    • /
    • 2013
  • A semi-active mass damping (SMD) system with magnetorheological (MR) dampers focusing on low- and mid-rise buildings is proposed in this paper. The main purpose of this study is to integrate the reliable characteristics of the traditional tuned mass damper (TMD) and the superior performance of the active mass damper (AMD) to the new system. In addition, the commonly seen solution of deploying dense seismic dampers throughout the structure nowadays to protect the main structure is also expected to switch to the developed SMD system on the roof with a similar reduction performance. In order to demonstrate this concept, a full-size three-story steel building representing a typical mid-rise building was used as the benchmark structure to verify its performance in real life. A numerical model with the interpolation technique integrated was first established to accurately predict the behavior of the MR dampers. The success of the method was proven through a performance test of the designated MR damper used in this research. With the support of the MR damper model, a specific control algorithm using a continuous-optimal control concept was then developed to protect the main structure while the response of the semi-active mass damper is discarded. The theoretical analysis and the experimental verification from a shaking table test both demonstrated the superior mitigation ability of the method. The proposed SMD system has been demonstrated to be readily implemented in practice.

Performance Evaluation of Vibration Control of Adjacent Buildings According to Installation Location of MR damper (인접건축물의 진동제어를 위한 MR감쇠기의 위치 선정에 관한 연구)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • In recently, the vibration control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. MR dampers can be controlled with small power supplies and the dynamic range of this damping force is quite large. This MR damper is one of semi-active dampers as a new class of smart dampers. In this study, vibration control effect according to the installation location of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Groundhook control model is applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement responses can be effectively controlled as adjacent buildings are connected at roof floors by MR damper. And acceleration responses can be effectively reduced when two buildings are connected at the mid-stories of adjacent buildings by MR damper. Therefore, the installation floor of the MR damper should be selected with seismic response control target.

Ground response of a gob-side gateroad suffering mining-induced stress in an extra thick coal seam

  • He, Fulian;Gao, Sheng;Zhang, Guangchao;Jiang, Bangyou
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents an investigation of the ground response of a gob-side gateroad suffering mining stress induced by a 21 m-thick coal seam extraction. A field observation, including entry convergence and stress changes monitoring, was first conducted in the tailgate 8209. The observation results of entry convergence showed that, during the adjacent panel 8210 retreating period, the deformation of the gob-side gateroad experienced a continuous increase stage, subsequently, an accelerating increase stage, and finally, a slow increase stage. However, strong ground response, including roof bending deflection, rib extrusion and floor heave, occurred during the current panel 8209 retreating period, and the maximum floor heave reached 1530 mm. The stress changes within coal mass of the two ribs demonstrated that the gateroad was always located in the stress concentrated area, which responsible for the strong response of the tailgate 8209. Subsequently, a hydraulic fracture technique was proposed to pre-fracture the two hard roofs above the tailgate 8209, thus decreasing the induced disturbance on the tailgate. The validity of the above roof treatment was verified via field application. The finding of this study could be a reference for understanding the stability control of the gob-side gateroad in extra thick coal seams mining.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

Characteristics of Thermal Performance on the Different Ambient Air Temperatures of Green Roof Plants

  • Han, Seung Won;Park, Joon Sung;Kim, Jae Soon;Jeong, Myung Il
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.272-280
    • /
    • 2016
  • Changes in land use and increase in urban energy consumption influence urban life. This study analyzed the characteristics and patterns of urban heat and presents management schemes to generate a comfortable and sustainable urban environment. The study aimed to demonstrate the positive effects of artificial ground greening on improving the microclimate through evapotranspiration using perennial herbs. We have designed a chamber that could control constant temperature and humidity, measure temperature reductions in each plant and changes in sensible heat and latent heat. This study identified Sedum kamtschaticum as the most effective plant in controlling temperature. At $22^{\circ}C$, $3.2^{\circ}C$ temperature reduction was observed, whereas four other plants showed a $1.5^{\circ}C$ reduction. At $25^{\circ}C$, $2.0^{\circ}C$ temperature reduction was observed. On the other hand, the use of Sedum sarmentosum resulted in the lowest effect. Zoysia japonica is the most commonly used ground covering plant, although the temperature reduction of Lysimachia nummularia was more effective at high temperature conditions. Sensible heat and latent heat were calculated to evaluate the thermal performance of energy. At a temperature >$30^{\circ}C$, L. nummularia and S. sarmentosum emitted high latent heat. In this study, we analyzed the thermal performance of green roof perennial plants; in particular, we analyzed the evapotranspiration and temperature reduction of each plant. Since the substrate depth and types, plant species, and seasonal change may influence temperature reduction and latent heat of green roofs, further studies are necessary.

Instrumentation and system identification of a typical school building in Istanbul

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.179-197
    • /
    • 2012
  • This study presents the findings of the structural health monitoring and the real time system identification of one of the first large scale building instrumentations in Turkey for earthquake safety. Within this context, a thorough review of steps in the instrumentation, monitoring is presented and seismic performance evaluation of structures using both nonlinear pushover and nonlinear dynamic time history analysis is carried out. The sensor locations are determined using the optimal sensor placement techniques used in NASA for on orbit modal identification of large space structures. System identification is carried out via the stochastic subspace technique. The results of the study show that under ambient vibrations, stocky buildings can be substantially stiffer than what is predicted by the finite element models due to the presence of a large number of partitioning walls. However, in a severe earthquake, it will not be safe to rely on this resistance due to the fact that once the partitioning walls crack, the bare frame contributes to the lateral stiffness of the building alone. Consequently, the periods obtained from system identification will be closer to those obtained from the FE analysis. A technique to control the validity of the proportional damping assumption is employed that checks the presence of phase difference in displacements of different stories obtained from band pass filtered records and it is confirmed that the "proportional damping assumption" is valid for this structure. Two different techniques are implemented for identifying the influence of the soil structure interaction. The first technique uses the transfer function between the roof and the basement in both directions. The second technique uses a pre-whitening filter on the data obtained from both the basement and the roof. Subsequently the impulse response function is computed from the scaled cross correlation between the input and the output. The overall results showed that the structure will satisfy the life safety performance level in a future earthquake but some soil structure interaction effects should be expected in the North South direction.

The Study on the Developing Process of BIM Modeling for Urban-life-housing Based on Unit Modular (유닛모듈러 기반 도시형 생활주택의 BIM 모델링 프로세스 개발 연구)

  • Lee, Chang-Jae;Lim, Seok-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The current architectural design of unit modular has been based on 2D of CAD program, so unit modular character which needs unit information management, as a dried-member system, has no effect on design process. The purpose of this study is We have developed a suitable BIM design process, according to various works of construction, then tried to contribute to supply and activation of the urban-life-housing based on unit modular. The BIM modeling process based on unit modular has been in order of unit combination with preparing manual classification, and, it has been constructed, at construction site, from housing foundation to roof finish by Bottom-up method. At a manufacturing factory, it has been produced in order of 1) grouping materials and parts, 2) fabricating unit boxes, and 3) interference examination of unit boxes, and each order has been classified as housing structure, architecture, plumbing process separately. At a construction site, the fabrication has been done in order of, like as a real housing construction scenario, 1) RC foundation work 2) unit module job-site-fabrication work, 3) roof truss work, 4) plumbing and HVAC work, and 5) housing interior finish work. After modeling process, the interference examination on each work of construction has finally completed modeling. The Unit modular utilizing BIM modeling can make easy housing maintenance through systematic control with preparing manual of unit module information, and securing accurate and speedy construction information. And it will promote design credibility and create maximum effect of unit modular construction method, such as construction period reduction and upgrade of construction quality, etc., through the computer simulation as real as construction environment in cyber space, and with the interfering examination.

A Study on the Deduction of Internal Temperature of the Ground Magazine (지상형 탄약고의 내부온도 감소 방안 연구)

  • Park, Hyungju;Choi, Myoungjin;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.142-149
    • /
    • 2013
  • Among ammunitions which are stored in a war field, the lifespan of propelling gunpowder is affected by storage environment such as storage temperature, humidity, and exposure to sunlight. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally disassembled to unstable substances similar with other nitric acid ester. We can't prevent it fundamentally from being disassembled, but to restrain induction of automatic disassembly by decomposition product, a decomposition product ($NO_2$, $NO_3$, and $HNO_3$) and tranquillizer DPA (Diphenylamine), having high reactivity, are added into a propellant. For this, it will decrease the velocity of tranquillizer which can also affect the velocity of producing the decomposition product of NC, storage temperature or humidity of propelling gunpowder is higher, drop of tranquillizer content is much faster. Therefore, to extend storage lifespan of propelling gunpowder, it is really important to control storage temperature or humidity inside the magazine. Hereupon, according to the manufacture of small scale model magazine and the result of performing experiments and measuring variation of inside temperature (storage temperature), using roof types that have a steel slate structure of magazine among ground magazines, this research shows the differences in details.

Evaluating pollution origins of runoff in urban area by stormwater (강우시 도시지역 강우 유출수 오염부하 기원평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.930-934
    • /
    • 2006
  • In this study, we conducted water-quality analysis of wastewater and in-situ flow measurement using automatic flow rate measuring instrument to identify characteristics of wastewater in urban areas, and collected samples in gutter fur storm water drain, rainfall bucket, and aqueduct of pipe from roof, and outfalls of basins to examine the contribution by pollution origins such as base wastewater, atmospheric washing, runoff by roof surface, runoff by road surface, erosion of sewer sediment. In the result, the concentration of pollutants reached peak in the beginning of rainfall due to first flush, was 3 to 10 times higher than average concentration of dry period, and was lower than that of dry period due to dilution of storm water. In the analysis of the contribution by pollution origins, the ratio of load by sewer sediment resuspension to the total pollution load was 54.6% fer COD, and 73.3% fur SS. Accordingly, we can reduce the total pollutant load by periodical dredging and washing of sewer sediment, and control the loadings by overflow of combined sewer overflows.

  • PDF