• Title/Summary/Keyword: rolling-over motion

Search Result 12, Processing Time 0.031 seconds

FUNDAMENTAL STUDY FOR ROLLING-OVER MOTION OF THE BODY BY FUNCTIONAL ELECTRICAL STIMULATION(FES) (기능적전기자극에 의한 체간제어의 기초적인 연구)

  • Lee, Joon-Ha;Hoshimiya, N.
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1990
  • A method to roll-over the paralyzed body by means of Functional Electrical Stimulation(FES) is considered. It is demonstrated that individual joint motions necessary for the rolling-over are realized by electrical stimulation. EMG measurements are also performed to analyze the cooperative activities of the muscles during rolling over motion in a case where an upper extremity was used. These results of two experiments using normal subjects verifies the fundamental feasibility of body control by FES.

  • PDF

Fundamental study for the restoration of the body movement by Functional Electrical Stimulation (FES) - EMG Analysis of the rolling-over motion -

  • Murakami, H.;Ohba, S.;Futami, R.;Hoshimiya, N.;Handa, Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.88-89
    • /
    • 1991
  • A method in order to restore the body movement by means of Functional Electrical Stimulation (FES) was considered. Multichannel EMG signals from a normal subject during the rolling-over motion were measured and analyzed. The results of the experiment indicated the synergetic role of the muscles during the desired motion.

  • PDF

A Study on the Anti-Rolling Systems for Vessels (선박용 감요장치에 대한 고찰)

  • Kwon, Sun-Young;Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.167-178
    • /
    • 1997
  • It has been expected not only for crew but also for passengers to realize a ship whose rolling and other motions are small as much as possible. Restricting our consideration to the roll reduction, the conventional roll stabilization system, fins or anti-rolling tanks hve been utiized as the actuator. Excessive motions would interfere with the recreational activities of passengers on a cruise ship. Often more than half of the load of a containership is stowed above deck where it is subjected to large acclerations due to rolling. In some situations this may cause some internal damage to the contents of the containers; in more severe situations failure of the lashing can occur and containers may be lost over-board. Underdeck cargo in ordinary cargo ships and bulk commodities in colliers, ore ships and grain ships can shift if the motions become too severe. The purpose of this study is to concentrate on the additions. either internal or external to the hull, that reduce or otherwise improve the motion responses of the hull. It is assumed that the additions are such that their benefit to the motions of the ship outweights any impact on the ability of the ship to perform its assigned task. It is particularly challenging to obtain large improvements in the motion characteristics of existing ships that are being rebuilt or modified for some task not anticipated in their original design. Further the authors will statistically analyze the influence of ruder-roll-yaw coupling motion in the case of application of this advanced control method to various kinds of ship.

  • PDF

The Experimental Study about a Correlation between the Derailment Coefficient of the Railway Vehicle and the Track Alignment (철도차량의 탈선계수와 궤도선형간의 상관관계에 관한 실험적 연구)

  • Ham, Young-Sam;Lee, Dong-Hyung;Kwon, Seok-Jin;Seo, Jung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.7-12
    • /
    • 2010
  • When a vehicle is running, wheel is generating vertical and lateral force on the rail, in addition to load of vehicle, through a complicated set of motions. The derailment coefficient refers to the ratio of lateral force to vertical force(wheel load), and if the value exceeds a certain level, a wheel climbs or jumps over the rail. That's why the value is used as a criterion for running safety. Derailment coefficient of rolling stocks alters according to shape of rail track. I measured three-dimensional angular velocity and acceleration to use 3D Motion Tracker. Test result, derailment coefficient of rolling stocks and shape of rail track examined closely that have fixed relation. Specially, was proved that roll motion has the close coupling relation.

On the Motion Characteristics of Small Trawler under Operation (소형 트롤 어선의 예망중 동요특성)

  • Lee, Chun-Ki;Kang, Il-Kwon;Kim, Jeong-Chang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • This paper deals with an experimental study on the dynamical characteristics of ship motion during trawling job on the real sea. The experiments were carried out on the small stern trawler, and roll and pitch motion of the ship according to the wave directions were simultaneously recorded by P/C in the same sea conditions. From these data, the statistical properties and power spectra were obtained, and then the analysis of ship motion in trwal job was made. As a result, it was found that the pitch motions in trwal job were displayed low amplitudes on the whole, but the rolling motions were displayed high amplitudes relatively, and very high value on the beam and quartering sea especially. Also, the trial ship has a high extinction coefficient in the roll motion, compared with the rule of stability, but when wave height takes 2.5m over, it can induce the safety of ship to scare occasionally. Therefore, a usefull countermeasure for the safety of ship has to be made adequately.

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

A COG Variable Analysis of Air-rolling-breakfall in Judo (유도 공중회전낙법의 COG변인 분석)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.117-132
    • /
    • 2005
  • It was to study a following research of "A Kinematic Analysis of Air-rolling-breakfall in Judo". The purpose of this study was to analyze the Center of Gravity(COG) variables when performing Air-rolling-breakfall motion, while passing forward over(PFO) to the vertical-hurdles(2m height, take off board 1m height) in judo. Subjects were four males of Y. University squad, who were trainees of the demonstration exhibition team, representatives of national level judoists and were filmed by four 5-VHS 16mm video cameras(60field/sec.) through the three dimensional film analysis methods.COG variable were anterior-posterior directional COG and linear velocity of COG, vertical directional COG and linear velocity of COG. The data collections of this study were digitized by KWON3D program computed The data were standardized using cubic spline interpolation based by calculating the mean values and the standard deviation calculated for each variables. When performing the Air-rolling-breakfall, from the data analysis and discussions, the conclusions were as follows : 1. Anterior-posterior directional COG(APD-COG) when performing Air-rolling-breakfall motion, while PFO over to the vertical-hurdles(2m height) in judo. The range of APD-COG by forward was $0.31{\sim}0.41m$ in take-off position(event 1), $1.20{\sim}1.33m$ in the air-top position(event 2), $2.12{\sim}2.30m$ in the touch-down position(event 3), gradually and $2.14{\sim}2.32m$ in safety breakfall position(event 4), respectively. 2 The linear velocity of APD-COG was $1.03{\sim}2.14m/sec$. in take-off position(event 1), $1.97{\sim}2.22m/sec$. gradually in the air-top position(event 2), $1.05{\sim}1.32m/sec$. in the touch-down position (event 3), gradual decrease and $0.91{\sim}1.23m/sec$. in the safety breakfall position(event 4), respectively. 3. The vertical directional COG(VD-COG) when performing Air-rolling-breakfall motion, while PFO to the vertical-hurdles(2m height) in judo. The range of VD-COG toward upward from mat was $1.35{\sim}1.46m$ in take-off position(event 1), the highest $2.07{\sim}2.23m$ in the air-top position(event 2), and after rapid decrease $0.3{\sim}0.58m$ in the touch-down position(event 3), gradual decrease $0.22{\sim}0.50m$ in safety breakfall position(event 4), respectively. 4. The linear velocity of VlJ.COG was $1.60{\sim}1.87m/sec$. in take-off position(event 1), $0.03{\sim}0.08m/sec$. gradually in the air-top position(event 2), $-4.37{\sim}\;-4.76m/sec$. gradual decrease in the touch-down position(event 3), gradual decrease and -4.40${\sim}\;-4.77m/sec$. in safety breakfall position(event 4), respectively. When performing Air-rolling-breakfall showed parabolic movement from take-off position to air-top position, and after showed vertical fall movement from air-top position to safety breakfall. In conclusion, Ukemi(breakfall) is safety fall method Therefore, actions need for performing safety fall movement, that decrease and minimize shock and impact during Air-rolling-breakfall from take-off board action to air-top position must be maximize of angular momentum, and after must be minimize in touch-down position and safety breakfall position.

A Study on Roll Reduction Devices for FPSOs (FPSO의 횡요 감쇠 장치에 대한 고찰)

  • PARK IN-KYU;YANG JIN-HO;SHIN HYUN-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.30-35
    • /
    • 2004
  • Several roll motion reduction devices are reviewed and suggested for the application in FPSO. The firstly suggested solution is the shape of the bilge. The next is a bilge keel. The last suggestion is the ART (anti-rolling tank). Typical U-tube type ART is designed for a FPSO and examined extensively by model experiment. The model section was made of transparent acryl. Free decay test, forced oscillation test and wave test were carried out at a two-dimensional wave flume. U-tube type ART is effective only when the natural periods of ART and ship are same. Therefore, the divided U-tube type ART with split plate is suggested for the reduction of the roll motion of a FPSO over the wide range of the roll period.

  • PDF

Omni-tread Type Snake Robot: Mathematical Modeling and Implementation (Omni-tread 뱀 로봇 모델링 및 개발)

  • Oh, Sang-Jin;Lee, Ji-Hong;Choi, Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1022-1028
    • /
    • 2008
  • This article presents an omni-tread snake robot that designed to locomote on narrow space and rough terrain. The omni-tread snake robot comprises three segment, which are linked to each other by 2 degrees of freedom joints for the pitch and yaw motion. Moving tracks on all four sides of each segment guarantee propulsion even when the robot rolls over. The 2 DOF joint are actuated by 2 servo motors which produce sufficient torque to lift the one leading or trailing segments up and overcome obstacles. This paper applies articulated steering technique to get omni-tread snake robot's kinematics model.

Parametric roll of container ships in head waves

  • Moideen, Hisham;Falzarano, Jeffrey M.;Sharma, S.Abhilash
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-255
    • /
    • 2012
  • Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behaviour of the time-varying restoring arm or metacentric height. This assumption enables modelling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modelling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.