• Title/Summary/Keyword: rolling process

Search Result 912, Processing Time 0.025 seconds

Dynamic Bulging Behavior Analysis by Finite Difference Method in High Speed Continuous Casting of Thin Slab (유한 차분법에 의한 Thin Slab 고속 연속주조의 동적벌징 거동해석)

  • Jeong, Yeong-Jin;Sin, Geon;Jo, Gi-Hyeon;Gang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1650-1660
    • /
    • 2000
  • Continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, rep lacing the conventional route of ingot casting and rolling. In order to achieve this merit, however, more studies about the mechanism between roll and slab are needed. In this paper, a dynamic bulging in steel cast slabs was simulated by considering the solidification and heat transfer. This study is to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under the ferrostatic pressure and slab-self weight has been calculated in terms of creep and elasto-plasticity. The strain and strain rate distributions in solidified shell undergoing a series of bulging are calculated with working boundary conditions.

Electrochemical Characteristics of Welded Stainless Steels Containing Ti (Ti 함유된 스테인리스강 용접부의 전기화학적 특성)

  • Choe Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.227-233
    • /
    • 2005
  • Electrochemical characteristics of welded stainless steels containing Ti have been studied by using the electrochemical techniques in 0.5 M $H_2SO_4$+0.01 M KSCN solutions at $25^{\circ}C$. Stainless steels with 12 mm thick-ness containing $0.2{\~}0.9 wt\%$ Ti were fabricated with vacuum melting and following rolling process. The stainless steels were solutionized for 1hr at $1050^{\circ}C$ and welded by MIG method. Samples were individually prepared with welded zone, heat affected zone, and matrix for intergranular corrosion and pitting test. Optical microscope, XRD and SEM are used for analysing microstructure, surface and corrosion morphology of the stainless steels. The welded zone of the stainless steel with lower Ti content have shown dendrite structure mixed with $\gamma$ and $\delta$ phase. The Cr-carbides were precipitated at twin and grain boundary in heat affected zone of the steel and also the matrix had the typical solutionized structure. The result of electrochemical measurements showed that the corrosion potential of welded stainless steel were Increased with higher Ti content. On the other hand, reactivation($I_r$), passivation and active current($I_a$) density were decreased with higher Ti content. In the case of lower Ti content, the corrosion attack of welded stainless steel was remarkably occurred along intergranular boundary and ${\gamma}/{\delta}$ phase boundary in heat affected zone.

Construction of Modified Yield Loci with Respect to the Strain Rates using Hill48 Quadratic Yield Function (Hill48 이차 항복식을 이용한 변형률 속도에 따른 수정된 항복곡면의 구성)

  • Lee, Chang-Soo;Bae, Gi-Hyun;Kim, Seok-Bong;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.56-60
    • /
    • 2010
  • Since the forming process involves the strain rate effect, a yield function considering the strain rate is indispensible to predict the accurate final blank shape in the forming simulation. One of the most widely used in the forming analysis is the Hill48 quadratic yield function due to its simplicity and low computing cost. In this paper, static and dynamic uni-axial tensile tests according to the loading direction have been carried out in order to measure the yield stress and the r-value. Based on the measured results, the Hill48 yield loci have been constructed, and their performance to describe the plastic anisotropy has been quantitatively evaluated. The Hill48 quadratic yield function has been modified using convex combination in order to achieve accurate approximation of anisotropy at the rolling and transverse direction.

Thickness Control of Tandem Cold Mills Using $H{\infty}$Control Techniques ($H{\infty}$제어기법에 의한 연속 냉간 압연시스템의 두께 제어)

  • 김종식;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.145-155
    • /
    • 1998
  • An $H{\infty}$ controller with a roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occured in rolling stands themselves of tandem cold mills. A robust controller to the disturbances is designed by H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and the knowledge of disturbance spectrum in the frequency domain. First, fundamental problems in tandem cold mills such as process transport delay inherent in the exit thickness measurement and the feedforward loading of roll eccentricity signals on the exit thickness be overcome by the roll eccentricity filtering and the compensation for the error of gaugemeter thickness estimator. And non-satndard $H{\infty}$ control problem caused by the selection of weighting function having poles on the $J{\omega}$-axis is discussed. The resultant controller composed by an $H{\infty}$ controller and an estimator for the roll eccentricity is evaluated through computer simulations. The effectiveness of the proposed control method is compared to that of the conventional LQ controller method and a feedforward controller for the roll eccentricity, which has been already studied.

  • PDF

Pastic Strain Ratio and Texture Evolution of Aluminum/Polypropylene/Aluminum Sandwich Sheets (알루미늄 5182-폴리프로필렌 샌드위치 판재의 소성변형비 및 집합조직의 발달)

  • Kim, Kee-Joo;Jeong, Hyo-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.57-66
    • /
    • 2006
  • AA5182-polypropylene sandwich sheet was manufactured, and the mechanical properties evaluation was executed in order to identify $L{\ddot{u}}ders$ band that causes fabrication process problem and especially surface roughness. To identify formability, deformation behavior, plastic strain ratio (R-value) and pole figure were measured, and texture analysis was performed. In the case of sandwich sheet, the unstable deformation behavior has decreased. As well, for sandwich sheet, A1 skin could manage the most of load, and the elongation has improved about 45% more than that of A1 skin. The plastic strain ratio of A1 skin and sandwich panel, which indicates serration behavior, was obtained from instantaneous plastic strain ratio evaluation. Also, the planar anisotropy of sandwich sheet has decreased more than that of A1 skin. According to these results, the sandwich sheet produced lightening effect and could control unstable deformation characteristic, that is, surface roughness caused by $L{\ddot{u}}ders$ band. Furthermore, it was proved that the texture control of the rolling attachment of A1 skin is necessary to improve the formability of the sandwich panel.

Texture and Microstructure in AA3004 after Continuous Confined Strip Shearing (CCSS 변형된 AA 3004 판재의 집합조직과 미세조직)

  • 김훈동;정영훈;황병복;최호준;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • A new deformation process termed "continuouis confined sup shearing" (CCSS) has been developed for shear deformation of metallic sheets. The tools of CCSS were designed to provide a constant shear deformation of the order of 0.5 per pass while preserving the original sheet shape. In order to clarify the evolution of texture and microstructure during CCSS, strips of the aluminum alloy AA3004 were deformed by CCSS in up to three passes. FEM results indicated that CCSS provides a quite uniform shear deformation at thickness layers close to the strip center, although the deformation is not homogeneous in the die channel, in particular at the surface layers. The rolling texture of the initial sheet decreased during CCSS, and preferred orientations along two fibers developed. However, with an increasing number of CCSS passes the deformation texture did not develop futher. The evolution of annealing textures depended on the number of CCSS passes. A strong {112}<110> component in the deformation texture led to the formation of a strong {111}<112) orientation in the annealing texture. Observations by TEM and EBSD revealed the formation of very fine grains of ∼1.0$\mu\textrm{m}$ after CCSS.

  • PDF

An experimental study on the oriented mechanical properties of aluminum micro thin foil material (알루미늄 마이크로 박판소재의 방향성에 관한 실험적 연구)

  • Lee H. J.;Lee N. K.;Choi S.;Lee H. W.;Choi T. H.;Hwang J. H.;Kwag D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • This paper is concerned with the precision material property measurement of a micro metal thin foil that is used in MEMS technology. Since these MEMS components require great precision and accuracy, evaluation of reliability such as the lift cycle endurance test, impact test, and residual stress test is necessary for these components. However, in practice, real reliability tests are not easy to perform due to consideration of various factors. Rather than actual testing, it would be much easier to evaluate the reliability of components by the analytical approach. Although the analytical method is utilized by software tools, it is obviously necessary to acquire fundamental properties of materials through real test methods. In this paper, the oriented mechanical properties of aluminum thin foil are measured by nano scale material property measurement system.

  • PDF

Particle Motion of a Vertical Rotary Distributor for Granular Material (수직형(垂直形) 로터리 살포기(撒布機)에 의한 비료입자(肥料粒子)의 운동(運動))

  • Sung, M.K.;Park, J.G.;Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.242-250
    • /
    • 1989
  • The performance of a vertical type centrifugal distributor of granular materials was studied by means of mathematical models and experimental investigations. To develop the mathematical description of particle motion, some assumptions were made. The distribution process consisted of three stages: the entrance of a particle to the blade, the motion of the particle on the blade, and the motion of the particle in the air. The physical properties of fertilizer, which affected the particle motion, were investigated: bluk density, coefficient of friction, coefficient of restitution, and particle size distribution. The particle motion were simulated by using a computer. A prototype distributor was designed and constructed for experimental tests. The following conclusions were drawn from the computer simulation and experiment results. 1. The fertilizer may slide or roll at the point of contact when they impact on the blade and move along the blade. 2. The interaction among fertilizers may prevent them from bouncing. 3. When fertilizers roll on the blade, rolling resistance is one of the factors affecting the particle's motion. 4. The trajectory angle and position of fertilizers from a disc depend on the blade position and particle shape, but the rotating speed of the disc affected them only slightly.

  • PDF

An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs (연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

Effects of Minor Alloying Elements on the Microstructure and Mechanical Properties of High Conductivity Cu-Mg-P Base Alloys (Cu-Mg-P계 고전도성 합금의 미세조직 및 기계적 성질에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Kim, Hyun-Gil
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2008
  • The microstructure of Cu-Mg-P base alloys were significantly affected by small amounts of Fe and Co additions, however the tensile properties and electrical conductivity of the Cu alloys were mainly determined by the fabrication process. Relatively high electrical conductivity (> 80% IACS) was obtained in the all Cu-Mg-P based alloys when they were finally aged at $480^{\circ}C$. Tensile properties could be significantly enhanced by final cold rolling, especially at extremely low temperatures. Softening of cold-rolled alloys took place at about $450^{\circ}C$ owing to recovery and recrystallization, but it was delayed up to $500^{\circ}C$ in the Fe-added alloy.