• Title/Summary/Keyword: rolling process

Search Result 912, Processing Time 0.021 seconds

A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets (열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구)

  • Kim S. H.;Yim C. D.;You B. S.;Seo Y. M.;Chung I. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

Development of Variable Rolling Pressure Device for Bead-Shape Accuracy and Mechanical Property Enhancement in WAAM (Wire Arc Additive Manufacturing(WAAM)에서 적층 비드(Bead) 형상 정확도 및 기계적 특성 향상을 위한 가변 가압장치 개발)

  • Hwang, Ye-Han;Lee, Choon-Man;Kim, Dong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.66-71
    • /
    • 2022
  • Metal additive manufacturing (AM) has revolutionized several manufacturing industries. AM can generate large-scale metal components and produce complex geometries close to net-shapes. WAAM is an AM technology that has garnered considerable interest among industries owing to its economics and relatively high deposition rates. However, the heat accumulation in the weld bead during deposition triggers distortion and residual stress. To address these problems, various methods of interpass pressure rolling systems have been suggested in recent research. In addition, combining the rolling and WAAM processes can mitigate residual stresses. The constant-pressure rolling of the interlayer also affect the microstructure. The coarse microstructure of the as-deposited sample was altered to finer equiaxed grains via these methods. However, the bead-shape accuracy of the interlayer constant-pressure method does not consider the heat accumulation in each layer. Therefore, this study develops an interpass variable pressure rolling system that considers the heat accumulation of each layer. The interpass variable pressure rolling system comprises deposition, detection, pressure, and transport units. Finally, verification tests are performed on the interpass variable-pressure rolling system (at 500 kg) with the WAAM process, and the obtained results are discussed.

Rolling of AZ31 Alloy and Microstructure of Rolled Plates (압연조건에 따른 AZ31 마그네슘합금판재의 변형거동 및 미세조직 변화)

  • Ha, T.K.;Jeong, H.T.;Sung, H.J.;Park, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.63-66
    • /
    • 2006
  • The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as $200^{\circ}C$ under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 mm after 50% reduction in single pass rolling at $200^{\circ}C$. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.

  • PDF

Formation of Rolling and Recrystallization Textures in IF Steel Cold-rolled by Cross-Roll Rolling Mill (교차롤로 냉간 압연한 IF 강에서 압연 집합조직과 재결정 집합조직의 형성)

  • Lee, Kye-Man;Kim, Sang-Hyun;Huh, Moo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.644-650
    • /
    • 2010
  • Interstitial free (IF) steel sheets were cold rolled by the cross-roll rolling mill in which the roll axes are tilted by ${\pm}7.5^{\circ}$ away from the transverse direction of the rolled sample. After cross-roll rolling of IF steel sheets, the cold rolling and the recrystallization textures were distinguished from those observed after rolling in a normal rolling mill. The three-dimensional finite element method (FEM) simulation revealed that the operation of a large shear strain ${\varepsilon}_{23}$ during cross-roll rolling leads to the formation of a distinct cold rolling texture. During recrystallization annealing, a pronounced change in texture components was not observed, which is attributed to the lack of either selective growth or oriented nucleation during the recrystallization process. Cold cross-roll rolling led to the formation of finer recrystallized grains in IF steel sheets.

Effect of Asymmetric Hot Rolling on the Texture Evolution of Fe-3%Si Steel

  • Na, Tae-Wook;Park, Hyung-Ki;Park, Chang-Soo;Joo, Hyung-Don;Park, Jong-Tae;Han, Heung Nam;Hwang, Nong-Moon
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1369-1375
    • /
    • 2018
  • In Fe-3%Si steel, the hot rolling process affects not only the hot rolling texture but also the primary recrystallization texture. Here, the effect of asymmetric hot rolling was studied by comparing the difference in the texture evolved between asymmetric and symmetric hot rolling. The effect of asymmetric hot rolling on the texture of primary recrystallized Fe-3%Si steel was also studied. The symmetric hot rolling of Fe-3%Si steel produces a rotated cube texture at the center but Goss and copper textures near the surface. Asymmetric hot rolling tends to produce Goss and copper textures even at the center like the texture near the surface. After primary recrystallization, the dominant texture at the center changes from {001} <210> to {111} <112> and the new texture has a higher fraction of the grains which make the low energy boundary with Goss grains than that of symmetric hot rolling.

Application of the Preliminary Displacement Principle to the Temper Rolling Model

  • Lee, Won-Ho;Yuli Liu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.225-231
    • /
    • 2001
  • A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.

  • PDF

A Numerical Analysis of H Shape Rolling (H 형강압연의 수치해석)

  • Park, Jong-Jin;Jeong, Nak-Joon;Kim, Jae-Joo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.375-389
    • /
    • 1995
  • In H shape rolling, accurate predictions of deformation and temperature distribution in a billet are quite important because they are the main factors in determining roll calibers and roll pass schedules. Many researches have been performed to achieve the predictions, but most of them are limited to single pass or isothermal assumptions. In the present investigation, it is attempted to develop a method to predict the deformation and temperature distributions which is applicable to a complete rolling process that usually consists of several rollings under different rolls for a period of time. The method works by coupling two analyses : one is an approximate analysis for temperature distribution prediction and the other is the slab-FEM hybrid analysis for deformation prediction. The method is applied to analyze a "H" shape rolling process consisting of nine passes under four different rolls. In the present paper, basic ideas of the method are presented. Also, shapes of cross sections, strain and temperature distributions, roll separating force and roll torque predicted by the method are discussed.

  • PDF

Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process (고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석)

  • Her, J.;Lee, H.J.;Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.432-435
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology to achieve continuous production between the steelmaking and hot rolling processes. Conventionally, a vertical roll process has been used to achieve extensive width reduction. However, it is impossible to avoid the defects such as dog-bone, fish tail and camber. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger, i.e. the material better flows toward the center of slab. This study is carried out to investigate the deformation of slab by two-step sizing press. The FE-simulation is utilized to predict plastic deformation mode in compression by a sizing press of slabs far hot rolling. In this paper, the various causes of the asymmetrical rolling phenomena are mentioned for the purpose of understanding of rolling conditions. Analytical results of slab-deformation by sizing press are presented below in this study.

  • PDF