• 제목/요약/키워드: rolling process

검색결과 912건 처리시간 0.025초

후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향 (The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling)

  • 임홍섭;주병돈;이혜경;서재형;문영훈
    • 열처리공학회지
    • /
    • 제22권1호
    • /
    • pp.16-22
    • /
    • 2009
  • The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.

HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘 (Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process)

  • 김웅
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.

스테인리스 냉연공정에서 퍼지 형상제어 (A Fuzzy Shape Control Method for the Stainless Steel at the Cold Rolling Process)

  • 허윤기
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1062-1070
    • /
    • 2009
  • The strip shape for the stainless steel process has made an issue of the strip quality, and hence the shape control method is developed at the Sendzimir rolling mill (ZRM). ZRM is a stainless cold rolling mill and has actuators for the shape control. They are first intermediate rolls and top crown rolls, which are controlled horizontally and vertically, respectively. The shape control of the stainless steel rolling process has difficulty in obtaining the symmetrical shape. The objective of the shape control is to minimize the shape deviation and to maintain stable state, which keeps symmetrical shape pattern in the lateral direction. The method of the shape recognition employs a least squares method and neural network. The shape deviation is the difference between the target shape and actual shape and is controlled by the fuzzy shape control. The fuzzy shape control using operator's informative knowledge is proposed in this paper. The experiments are carried out online for various stainless materials and sizes. The productivity of the rolling process has increased from 9.0 to 9.4 tons per hour.

탄소강 선재 압연공정의 DCI 롤 마멸 예측 기술의 개발 (Development of Technique Predicting of the Wear of DCI Roll Using Carbon Steel in Hot Rod Rolling Process)

  • 김동환;김병민;이영석;유선준;주웅용
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1736-1745
    • /
    • 2002
  • The objective of this study is to predict the roll wear in hot rod rolling process. In this study hot rod rolling process for round and oval passes has been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the thermal softening of DCI (Ductile Cast Iron) roll according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering parameter curve. 3D wear program developed in this study might be used for adjusting the gap of rolls to set up a suitable rolling schedule for keeping dimensional tolerance of the product.

소재 크기효과를 고려한 미세가공공정 유한요소해석 (Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials)

  • 변상민;이영석
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

모의 시스템을 이용한 열연공정 Slab 스크래치 감소를 위한 Flying Touch 기법 연구 (A Study of a Flying Touch Method to Reduce Slab Scratches in a Hot Rolling Process Using a Simulation System)

  • 김성진;김현희;윤성민;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.723-728
    • /
    • 2015
  • In the conventional hot rolling process, the defects of products such as scratches occur due to impact and friction. Impact occurs as a result of the contact of between rollers and the slab. Also, friction occurs in the rolling process. To improve these defects, a variety of processes were developed. The flying touch method is also one of the processes to reduce defects and uses a movable upper roller. To use this unfixed roller, the impact and frictions between rollers and the slab should be minimized. This paper proposes a hot rolling process simulator to verify and test the efficiency of the flying touch method. The simulator was designed to verify the method. This paper also proposes a new impact reducing method and velocity synchronization method which are simulated to realize the method.

A Study on Rolling Mill Dynamics Model and Automatic Gauge Control System

  • Kim, Tae-Young;Kwon, Dae-Hyun;Choi, Won-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.120-125
    • /
    • 2004
  • In the rolling of steel or non-steel metal the most important quality aspect are thickness and flatness. In thickness, there are two important factors. One of them is getting close with accurate goal, nominal gauge, the other is minimize gauge bandwidth, the variation in gauge. In this thesis, we proposed the fuzzy model AGC to minimize gauge variation along the length, developed the rolling mill dynamic model using the math mode of the rolling mill process and the rolling model related with the variety character of the rolling material. We compared the gauge control efficiency of fuzzy model AGC and PI mass flow AGC. We have got a simulation result, that the exit gauge variation of PI mass flow AGC was 2 micron and fuzzy model AGC was 1.2 micron at 1200mpm of rolling speed when each controller was rolling 5 micron of material that is the entry gauge variation.

  • PDF

철도차량의 개발 및 운용을 위한 RAMS 관리 시스템 개발 (Development of a framework for engineering RAMS into rolling stock through life cycle in the operator perspective)

  • 박문규;안민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.2179-2194
    • /
    • 2010
  • RAMS is becoming increasingly important in the decision making process for the rolling stock projects in order to improve competitiveness by reducing system life cycle cost while improving reliability, availability, maintainability and safety. In order to apply and manage RAMS of rolling stock systems effectively in the operator perspective, it is essential to integrate and control RAMS systematically from the early stage of rolling stock projects. RAMS management is to implement a RAMS system into rolling stock projects in terms of a rolling stock operator, which presents the strategic directions of RAMS policy, objectives, requirements, control, analysis, measurement and improvement throughout life cycle of rolling stock projects. This article presents a new framework of RAMS management that provides an effective and efficient way for managing RAMS in rolling stock systems in the railway industry.

  • PDF

The Bending minimization of Joint Shat in Cross rolling

  • Park Joon Soo;Lim Seong Joo;Yoon Duk Jae;Choi Seogou
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.107-114
    • /
    • 2003
  • Although cross rolling process has many advantages in forging a joint shaft, an automotive component of front axle unit, subsequent process is necessary to straighten its bending during forging process. In this paper the bending minimization of the joint shaft was studied to eliminate such an additional process. First of all, a characteristic diagram was used to find out factors affecting the bending of the shaft. Also design of experiments was utilized for estimating the influence of those factors. It was found that the phase angle, which is the difference in starting positions between upper and lower dies, was important to minimize the bending of joint shaft and die cooling is necessary to diminish the distribution of bending.

  • PDF

2.25% Cr-1%Mo 합금계 열연강판 제조기술 (Manufacturing 2.25Cr-1Mo Steel In Hot Rolling Strip Mill)

  • 노태훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.390-398
    • /
    • 1999
  • The thermomechanical control process(in hot rolling strip mill) was employed to produce 2.25Cr-1Mo steel, which is to be construction material for the steam generator for power plant. Although the Conventional processes has been the primary means of producing the 2.25Cr-1Mo steel, an alternative method was used to meet the specification of ASTM heat treatment for A387-22-Classl using autotempering after coiling in hot rolling strip mill. The microstructures, tensile properties at various temperatures, and creep-rupture properties have been investigated to compare the properties with those of materials produced by the conventional process and to certify the application of the thermomechanical control process to an actual process of manufacturing 2.25-Cr-1Mo steel, this in turn, will reduce the cost of the process. About 14 to 34% glanular bainite (remainder proetectoid ferrite) formed in a coil, and this variety of volume fraction stems from the different cooling rates, which varies with position of the coil after coiling. Tensile testing from room temperature to 700$^{\circ}C$ indicated that strength increases with test temperature showing peaks at around 600$^{\circ}C$. Creep-rupture properties have been being investigated at the temperature of 500$^{\circ}C$ with 27.5, 32kg/$\textrm{mm}^2$ loads and have showed no rupture for over 1000 hours.

  • PDF