• Title/Summary/Keyword: rolling mill

Search Result 335, Processing Time 0.022 seconds

Technology of flatness control for high strength steel in hot strip mill (열간압연 고강도강 형상제어기술)

  • 박해두;송길호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.184-187
    • /
    • 2003
  • The simulation program is developed to get the target strip crown of high strength steel in the continuous hot strip rolling. The developed program consists of several sub-program, which contains work roll shifting pattern, roll wear profile, roll thermal expanded profile and strip profile. Also, the variation of strip profile is investigated according to roll deflection and flattening. The results are compared with the values observed from the actual hot rolling of high strength steel. And effect of bender force on the strip profile is studied. The strip crown is shown to decrease with increasing bender force.

  • PDF

Development of a Crop Drop Detection System for Heated Rolling Process of Steel Mill (열간압연 공정을 위한 철편(鐵片)검출 시스템 개발)

  • Kim, Jong-Chul;Kwon, Tai-Gil;Han, Min-Hong
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.248-257
    • /
    • 2003
  • In a heated rolling process of a steel mill where steel plates are pressed to a sheet coil by spreading and expanding, an irregularly-shaped head portion as well as a tail portion of the sheet coil need to be cropped. Any crop which is not clearly cut and separated from the sheet coil may cause critical damages to the facilities of the following processes. As the cropping process is performed very fast, human eyes are not proper for continuous monitoring of the cropping process. To solve this problem, we have developed a machine-vision based crop-drop detection system. The system also measures lengths of major and minor axes for the crops and thereby determines the proper crop size to minimize steel sheet losses.

A study on the stability criterion of the control systems for the drive systems in rolling mill plants (압연구동제어계(壓延驅動制御系)의 안정도(安定度) 판정법(判定法)에 관한 연구)

  • Jeong, H.S.;Baek, K.N.;Kang, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.380-382
    • /
    • 1989
  • It is necessary for us to maintain good the quality of products in iron and steel making process, especially in the rolling mill plants. Thus, we need check the stability criteria of control systems. In the frequency domain, the whole system including controllers can be identified using FFT analyzer. But this method is not adequete where precise identification is demanded. Thus a way to complement the defects In the frequency domain analysis using FFT analyzer is introduced. And In the time domain, to establish the stability criteria on the control systems, the assumed parameters obtained using least square method are presented in this report.

  • PDF

Application of CDM to MIMO Systems: Control of Hot Rolling Mill

  • Kim, Young-Chol;Hur, Myung-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-256
    • /
    • 2001
  • This paper deals with a design problem of a decentralized controller with a strongly connected two-input two-output multivariable system. To this end, we present a classical design approach which consists of two main steps: one is to decompose the multivariable plant into two single-input single-output systems by means of the Individual Channel Design (ICD) concept, the other is to design controller of each channel by the Coefficient Diagram Method (CDM) so that it satisfies, especially, time domain specifications such as settling time, overshoot etc.. A design procedure was proposed and then was applied to a 2$\times$2 hot rolling mill plant. Simulation results showed that the proposed method has excellent control performances.

  • PDF

Development of Flow Stress equation of High strength steel for automobile using Neural Network and Precision Roll Force Model (신경망 함수를 이용한 자동차강의 변형저항 개발 및 압연하중 예측)

  • Kwak W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.145-152
    • /
    • 2004
  • The flow stress value was calculated by comparing predicted and measured roll force. Using basic on-line roll force model and logged mill data the flow stress equation of high strength steel for automobile was derived. The flow stress equation consists of the flow stress equation of carbon steel and flow stress factor calculated by neural network with input parameters not only carbon contents, strip temperature, strain, and strain rate, but also compositions such as Mn, p, Ti, Nb, and Mo. Using the flow stress equation and basic roll force model, precision roll force model of high strength steel for automobile was derived. Using test set of logged mill data the flow stress equation was verified.

  • PDF

Mechanical Properties of High Strength Hot Strips For Line Pipe Application (라인파이프용 고강도 열연강판의 기계적 성질)

  • 김문수;김준성;강기봉;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.383-389
    • /
    • 1999
  • The purpose of this study was to investigate the effects of alloying and rolling condition on the mechanical properties and to develop high strength line pipe steels with good toughness. Tests were carried out by the laboratory experiments followed by mill trials and mass production. It was found that a small addition of microalloying elements, such as Nb, V with Mo or Ti remarkably increased the strength and toughness of hot strips. The optimum condition of thermomechanical rolling on low carbon microalloyed steel improved the toughness through the formation of a fine and uniform microstructure. Based on this mill trials following the fundamental research, the production technology of line pipe steels, grade X70∼X100 with high toughness, has been established. These grade steels exhibit excellent low temperature toughness (vTs= under -80$^{\circ}C$) and sufficient strength in both the base metal and the ERW seam weld position, respectively.

  • PDF

An analytical model for the prediction of strip temperatures in hot strip rolling (열간 압연 중 판의 온도 분포 모델 개발)

  • Kim, J.B.;Lee, J.H.;Hwang, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.97-102
    • /
    • 2009
  • In hot strip rolling, sound prediction of the temperature of the strip is vital for achieving the desired finishing mill draft temperature (FDT). In this paper, a precision on-line model for the prediction of temperature distributions along the thickness of the strip in the finishing mill is presented. The model consists of an analytic model for the prediction of temperature distributions in the inter-stand zone, and a semi-analytic model for the prediction of temperature distributions in the bite zone in which thermal boundary conditions as well as heat generation due to deformation are predicted by finite element-based, approximate models. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

FE-based On-Line Model for the Prediction of Radial Displacements in Roll Deformation (롤변형에서의 반경방향 변위 예측 온라인 모델)

  • Cho, J.B.;Hwang, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.19-22
    • /
    • 2009
  • It is essential to predict the deformed roll profile for the prediction of the strip profile in rolling process. The work roll of the Sendzimir mill has a small diameter in comparison to a barrel length, so that it is well deformed by the rolling pressure. Also it has a complex roll system, so it is difficult to analyze the roll deflection. In this paper, 3D finite element method is used for the analysis of the roll deflection of the Sendzimir due to the contact between rolls. But it takes much time to get the results, so that the on-line model to evaluate the radial deformation of a roll is developed on the basis of the finite element method.

  • PDF

Minimization of Crop Length by Sizing Press in Hot Rolling Mill (열간 조압연 공정에서 2단 사이징 프레스에 의한 크롭 최소화)

  • Heo, S.J.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.619-626
    • /
    • 2008
  • In this study, design methodology to determine optimal shape of the anvil in sizing press process has been proposed to minimize crop length of the AISI 1010 slab in horizontal rolling after width reduction. Shape of anvil were selected to 12 cases by design of experiment, and the dog-bone shapes and the crop length were determined by FE-analysis. Also, the anvil shape, which has minimum crop length, were determined by artificial neural network(ANN). As a result of FE-analysis, it can be seen that the crop length was increased with increasing center thickness in the dog-bone shape after width reduction. The anvil shape which has minimum crop length, was estimated to ${\theta}_{1}=21^{\circ}{\theta}_{2}=14^{\circ}$ by FE-analysis and ANN.

A New Model for Predicting Width Spread in a Roughing Mill - Part II: Application to Flat Rolling (조압연 공정의 판 폭 퍼짐 예측 모델 - Part II : 평판에의 적용)

  • Lee, D.H.;Lee, K.B.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • Precision control of the slab is crucial for product quality and production economy in hot strip mills. The current study presents a new model for predicting width spread of a slab with a rectangular cross section during roughing. The model is developed on the basis of the extremum principle for a rigid plastic material and a three dimensional admissible velocity field. This model incorporates the effect of process variables such as the shape factor and the ratio of width to thickness. We compare the results of this model to 3-D finite element (FE) process simulations and also to results from a previous study.