• Title/Summary/Keyword: rolling mill

Search Result 335, Processing Time 0.027 seconds

Effect of Non-Metallic Inclusions and Hot Rolling Process Parameters on Hydrogen Induced Cracking of Linepipe Steels (라인파이프 강재의 수소유기균열에 미치는 열간압연 공정변수의 영향)

  • Koh, Seong Ung;Jung, Hwan Gyo;Kang, Ki Bong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.257-266
    • /
    • 2008
  • AHydrogen induced cracking (HIC) was phenomenologically studied in terms of the effect of nonmetallic inclusions and hot rolling process parameters. By comparing the level of non-metallic inclusions in two different kinds of commercial grade steels having different HIC resistance, the role of non-metallic inclusions in HIC occurrence was investigated. Change in inclusion morphology and distribution during hot rolling was also studied throughout slab, rolling at austenite recrystallization region (roughing mill; RM) and rolling at austenite non-recrystallization region (finish mill; FM). In addition, the contribution of RM and FM parameters to HIC was investigated from the standpoint of change in inclusion morphology during hot rolling processes. As a result, HIC was closely related to the separation of large complex inclusion during hot rolling process. Large complex inclusions originated from the improper Ca treatment, after which equilibrium composition of slag should have resulted in eutectoid composition. By controlling the equilibrium slag composition equivalent to eutectoid one, HIC resistance could be improved due to the reduced size of inclusions. In addition, change in reduction/pass in RM had an effect on HIC resistance of steels while that in FM did not. Increase in the reduction/pass in the latter stage of RM improved HIC resistance of steels by enhancing the void enclosure around inclusions.

The roll gap control hydraulic hot strip mill using time delay control method (TDC기법을 이용한 유압식 열연압연기의 롤갭제어)

  • 홍성철;현장환;이정오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1469-1472
    • /
    • 1996
  • Hydraulic Hot Strip Mill (HHSM) rolls materials whose size and stiffness are various. So a roll gap controller for HHSM was designed using TDC(Time Delay Control) method. The performance of the roll gap control was evaluated through computer simulations. The simulation results indicate that TDC method show excellent robustness and tracking properties against PID control method in various rolling conditions.

  • PDF

Characteristic Analysis of Chattering in Finishing Mill (열연 사상압연기 채터링 특성 분석에 관한 연구)

  • Shin, N.H.;Lim, E.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1854-1858
    • /
    • 2000
  • Chattering phenomenon is an abrupt relative vibration between the strip and rolls of rolling machine in working. It inevitably results from the progress of the degeneration in the mill facilities. This research was carried out in order to analyze the characteristic and find the cause of chatter mark in finishing mill and it was founded that one of major cause is appearance of dead zone at pinion stand in case of excessive roll force.

  • PDF

Analysis of Rolling Contact Surface on PM-High Speed Steel by X-ray Diffraction (구름접촉을 하는 분말고속도공구강의 X선을 이용한 표면성상해석)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior performance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PH-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on super-saturated carbon in PM-HSS.

The Optimization of Shape Control in High Reduction Rolling in Minimill Process (미니밀에서의 고압하율과 형상변화 최적화 방안에 관한 연구)

  • Choi B. W.;Kim T. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.117-120
    • /
    • 2001
  • In hot roiling process, new rolling mills have been apapted to strip rolling but we can usually experience the problem of snaking of strip. This phenomenon was arisen by nonsymmetric rolling and on-centering and cambering of a strip and other mill conditions. Three dimensional analysis for strip rolling predicted the influence of nonsymmetric rolling, off-centering and pair crossing system This study evaluated the fundamental characteristics of snaking of a strip to optimize the operating condition for trouble free rolling.

  • PDF

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

A Study on the Roll Gap Set-up to Compensate Thickness Variation at Top-end in Plate Rolling (후판 압연시 선단부 두께편차 보상을 위한 롤갭 설정에 관한 연구)

  • Yim, H.S.;Joo, B.D.;Lee, G.Y.;Seo, J.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.290-295
    • /
    • 2009
  • The roll gap set-up in the finishing mill is one of the most important technologies in the hot plate rolling process. As the target thickness can be obtained by the correct set-up of the roll gap, improving the roll gap set-up technology is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. The objective of this study is to adjust the roll gap set-up for the thickness accuracy of plate in hot rolling process considering top-end temperature drop. Therefore this study has concentrated on determining the correct amounts of thickness variation according to top-end temperature drop and roll gap to compensate thickness variation. The control method of roll gap set-up which can improve the thickness accuracy was proposed. The off-line simulation of compensated roll gap significantly decreases top-end thickness variation.

A study on the characteristics of hydraulic automatic gauge control system for a reversing cold mill (유압압하식 자동두께제어장치의 특성에 관한 연구)

  • Kim, Soon Kyung;Jeon, Eon Chan;Kim, Moon Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 1996
  • Recently, the necessity for more accurate automatic gauge control has increased of customers' requirement for cold rolled steel sheets with thinner gauge and better gauge quality. Therefore, many cold rolling mills replaced its electric screw down automatic gauge control system with a new hydraulic automatic gauge control system, to ensure closer gauge tolerance. In this paper, The performance of a hydraulic automatic gauge control system for cold rolling has been investigated under industrial conditions. It was investigated that variation of gauge deviation according to the final products thickness, cold rolling speed and pass number, in the actual rolling mill. As a result, it was found that the system enables strip thickness variation to be reduced substantially and caused by poor gauge deviation have been drastically decreased. The test results are as following. The more the exit steel strip thickness is thick, the smaller the aguge deviation rate is large, and the more it is thin, the large the gauge deviation rate is large. Because the gauge deviation is larger at accleration speed and deceleration speed than steady speed, so automatic gauge control system is better to adopt over 50m/min. automatic gauge control system reduces rapidly large thickness deviation.

  • PDF

A Dynamic Set-up Technique for High Accuracy set-up of Continuous Hot Strip Finishing Mill (열간 마무리압연 설정의 정도향상을 위한 동적 설정법)

  • 문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.232-238
    • /
    • 1996
  • A dynamic mill set-up technique was developed to achieva a more precise roll gap set-up of the finishing mill stands for steel strip rolling. In the conventional mill set-up model the set-up values such as roll gap and roll speed are determined before the sheet bar reached the entry side of the finishing mill train and maintained constant until the strip top end passes through the last stand. In the way however a dynamic set-up logic that gives a way to adjust the roll gap value of the final mill stand for the strip ingoing from the ahead of the front stand was developed and attached to the existing set-up model. The roll gap modification is based on the analysis of the observation in the third stand of the finishing mill train. The dynamic set-up model was proved very effective for the more precise mill set-up and for operational stability in the hot strip finishing mill train.

  • PDF