• Title/Summary/Keyword: rolling fatigue contact

Search Result 108, Processing Time 0.027 seconds

Contact Fatigue Life for RRG System (BRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.121-125
    • /
    • 2000
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90 $\pm$ 2$\^{C}$,25 wt% NaOH ). All of the specimens, ① Si$_3$N$_4$, ② 3Y-TZP and ③ 3Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-HIPed, and then polished up to 0.02 $\mu$mRa of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress of 3.16 GPa and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$ and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_2$N$_4$. 3Y-TZP specimens alloyed with 5 wt% CeO$_2$ were not worn after aging and no phase transformation occurred while aging.

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90$\pm$2$^{\circ}C$, 25 wt% NaOH). All of the specimens, \circled1Si$_3$N$_4$, \circled23Y-TZP and \circled33Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-Hipped, and then polished up to 0.02 ${\mu}{\textrm}{m}$Ra of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress or 3.76 Gra and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_3$N$_4$. 3Y-TZP alloyed with 5 wt% CeO$_2$specimens were not worn after aging and no phase transformation occurred while aging.

  • PDF

A Study on the Life Span Prediction of Railroad Wheels caused by Rolling Contact Fatigue (철도차륜의 구름접촉피로에 의한 수명예측에 관한 연구)

  • Chun, C.K.;Yang, J.S.;Park, S.J.;Yi, G.S.;Ma, Y.S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1012-1020
    • /
    • 2006
  • The crack that occurs on the wheels of railroad cars can be categorized into a surface crack that starts from the surface or a subsurface crack that starts from the inside and can be detrimental to safe railroad operations. Therefore, estimating the growth life span of this type of crack is very important. In this research, the stress distributions, displacements, and the growth-life spans of both surface cracks and subsurface cracks have been studied. By using the finite element analysis, especially in the life span prediction process, the stress conditions and the stress intensity factors of the crack tip have been discovered. The Paris formula has been used to analyze the growth-life span prediction.

  • PDF

The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide (LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가)

  • Kang, Eun-Goo;Lee, Dong-Yoon;Kim, Seong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

Estimation of the Overhaul Cycle Time for KTX Wheelset Bearing by RCF Test (RCF 시험을 통한 KTX 윤축베어링의 분해 정비 주기 평가)

  • Sim, Dae-Sop;Heo, Tae-Hyeon;Park, Young-il;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • KTX wheelset bearings have thus far been maintained in accordance with the maintenance system of French national railway company, SNCF. The overhaul cycle time (OCT) of KTX wheelset bearings is now 1.4 million km in mileage. This value, however, has not been validated in Korea that has much different railway environments with France. In fact, it is impossible to validate OCT of wheelset bearings directly because they are disassembled and cleaned only when some faults are detected. In this paper, the accuracy of the current OCT value was evaluated indirectly by investigating the effect of grease lubricants on the bearing life. Five grease samples (one new and four aged greases) were used in this study. Four aged greases of different conditions were obtained from four wheelset bearings whose mileages were about 0.3, 1.2, 1.3, and 1.8 million km, respectively. Each grease sample was then injected into the RCF (Rolling Contact Fatigue) tester and fatigue lifetime was experimentally estimated. In addition, the wt% of Fe in each grease sample was analysed. The experiment results reveal that the bearing lifetime is inversely proportional to the mileage of grease sample while the wt% of Fe increases with the mileage of grease sample. Based on the experimental results, it can be concluded that the current OCT value is appropriate for the first overhaul of wheelset bearings. However, further validation is required to determine the second and third OCT values.

Characteristics of High Frequency Induction-Hardened Bearing Steel Produced by VIM (VIM에 의해 제조된 고주파 유도경화 베어링강의 특성에 관한 연구)

  • Choe, Byeong-Yeong;Jang, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1176-1181
    • /
    • 1998
  • Characteristics of high frequency induction- hardened bearing steel have been investigated using 0.55wt.% C-1.68wt.% Mn specimens produced by vacuum induction melting (VIM). The K4 value in DIN 57602 of the specimens was assessed to be 6.41, high level of cleanliness. The specimens were high frequency induction-hardened to form heterogeneous submicron- lath martensite in the surface hardened layer with about 2.5mm in effective depth. Rolling contact fatigue tests were conducted in elasto-hydrodynamic lubricating conditions under a maximum Hertzian contact stress of$ 492kgmm^{-2}$ . It was found that microhardness in the subsurface, up to about $500\mu\textrm{m}$ in depth, below the raceway of rolling contact fatigued specimens was increased in comparison with that of induction-hardened layers. The depth of maximum microhardness- increased region was about $100\mu\textrm{m}$ from surface, showing white etching area. Crack initiation and propagation in the white etching area below the raceway of rolling contact fatigued specimens were observed.

  • PDF

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Application of the Murakami Approach for Prediction of Surface Fatigue of Cemented Carbides

  • Sergejev, Fjodor;Kubarsepp, Jakob;Preis, Irina
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.633-634
    • /
    • 2006
  • The aim of present work is to link geometrical parameter of maximum area of structural defect $\sqrt{area}\;_{max}$ (proposed by Y. Murakami, 1983) with surface fatigue mechanisms. Determined relations allow making predictions of surface fatigue properties of cemented carbides (WC-Co hardmetal - H15 - 85wt% WC and 15wt %Co, TiC-based cermets - T60/8 - 60wt %TiC and Fe/8wt% Ni and T70/14 - 70wt %TiC and Fe/14wt% Ni) in conditions of rolling contact and impact cycling loading. Pores considered being equivalent to small defects. Three comparative defects conditions are distinguished: surface pore, just below free surface and interior pores. The Vickers hardness of binder (as main responsible for the fracture mechanism of hardmetal and cermets) assumed to be the basis of such assumption. The estimate of this prediction has been done by analyzing the pore sizes using the statistics of extremes. The lower bound of fatigue properties can be correctly predicted by considering the maximum occurring pore size.

  • PDF