• Title/Summary/Keyword: roll to roll system

Search Result 910, Processing Time 0.033 seconds

Balancing Control Algorithm for a Single-Wheeled Mobile Robot (외륜 이동로봇의 균형제어 알고리즘)

  • Lee, Hyun Tak;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

A Study on the Factors that Influence Jack Knife Phenomenon of Articulated Vehicles (연결(連結) 차량(車輛)의 재크나이프 현상에 영향(影響)을 미치는 인자(因子)인자에 대한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • Vehicular safety and occupant injury have been of considerable interest to the public. The dynamic response of an articulated vehicle is different from that of single body vehicle due to its geometric and inertia properties. Articulated vehicles have the tendency to jackknife if they lose driving safety. Influence of factors for driving safety of an articulated vehicle(Tractor-Semitrailers) has been analysed by the EDVTS, a kinetic analysis program for an articulated vehicle. EDVTS permits an analyst to investigate the effect of many variables in a short period of time, and enables to obtain an accurate explanation of driving safety. The factors used in the analysis include the load, friction coefficient, tire flat, increase of braking force, and trailer geometry. Based on the results, the articulation angle and driving safety were influenced remarkably by the load, coefficient of friction, increase of braking force. However, trailer geometry, such as length and width, did not affect articulation angle and driving safety

  • PDF

A Study on Lane Sensing System Using Stereo Vision Sensors (스테레오 비전센서를 이용한 차선감지 시스템 연구)

  • Huh, Kun-Soo;Park, Jae-Sik;Rhee, Kwang-Woon;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

Design and Control of a Quad-Rotor (쿼드로터 비행체의 설계 및 제어)

  • Shim, Sanghyun;Kim, Ji-Chul;Yang, Sungwook;Cheon, Dong-Ik;Lee, Sangchul;Oh, Hwa-Suk;Kang, Min-Young;Keum, Dong-Kyo
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Quad-rotor is one kind of a rotorcraft in Unmanned Aerial Vehicle (UAV), which consists of four rotors in total and fixed-pitch blades located at the four corners. This vehicle is emerging as popular platform for UAV research due to the simplicity of its construction, the ability of hovering and the vertical take-off and landing (VTOL) capability, etc. Because of those specific capabilities, this vehicle can be applied to many fields: search and rescue, mobile sensor networks, fire observation, etc. However a quad-rotor is much affected by the disturbance due to the characteristics of structure. So this vehicle needs attitude control for stabilizing. In this paper, we design the control law for automatic stabilization. The PID controller is used to control a brushless DC motor. And an accelerometer is used to measure the roll and pitch angles of a quad-rotor.

  • PDF

Wave Energy Extraction using Partially Submerged Pendulum Plate with Quay Wall (안벽 앞에 부분 잠긴 진자판에 의한 파랑에너지 추출)

  • Cho, Il-Hyoung;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.208-218
    • /
    • 2017
  • The performance of a wave energy converter (WEC) that uses the rolling motion of a partially submerged pendulum plate in front of a quay wall was analyzed. The wave exciting moment and hydrodynamic moment were obtained using a matched eigenfunction expansion method (MEEM) based on the linear potential theory, and then the roll motion response of a pendulum plate, time averaged extracted power, and efficiency were investigated. The optimal PTO damping coefficient was suggested to give the optimal extracted power. The peak value of the optimal extracted power occurs at the resonant frequency. The resonant peak and its width increase as the submergence depth of the pendulum plate decreases and thickness of the pendulum plate increases. An increase in the wave incidence angle reduces the efficiency of the wave energy converter. In addition, the WEC using a rolling pendulum plate contributes not only to the extraction of the wave energy, but also to a reduction in the waves reflected from the quay wall, which helps to stabilize ships going near the quay wall.

Balancing and Driving Control of a Mecanum Wheel Ball Robot (메카넘 바퀴 볼 로봇의 자세제어 및 주행)

  • Hwang, Seung-Ik;Ha, Hwi-Myung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.336-341
    • /
    • 2015
  • This paper proposes a balancing and driving control system for a Mecanum wheel ball robot which has a two axis structure and four motors. The inverted pendulum control method is adopted to maintain the balance of the ball robot while it is driving. For the balancing control, an anon-model-based controller has been designed to control the device simply without the need of a complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. For the driving control, the PID control algorithm has been adopted with angles of the wheels and the encoder data. The performance of the designed control system has been verified through the real experiments with the suggested ball robot.

Dynamic Position of Vehicles using AHRS IMU Sense (AHRS IMU 센서를 이용한 이동체의 동적 위치 결정)

  • Back Ki-Suk;Lee Jong-Chool;Hong Soon-Hyun;Cha Sung-Yeoul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Block and Extraction of Wave Energy Using a Rolling Porous Pendulum Plate (횡 방향으로 운동하는 투과성 진자판을 이용한 파랑에너지 차단과 추출)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.180-190
    • /
    • 2018
  • The preliminary study was carried out to utilize the rolling porous pendulum plate as a hybrid system combining blocking and extracting of wave energy. The Galerkin method suggested by Porter and Evans (1995) was used to solve the diffraction and radiation problems to obtain reflection and transmission coefficient, roll displacement, extracted power. The Galerkin method provides better convergence than the matched eigenfunction expansion method (MEEM), which improves the accuracy of the analytical solution even if the CPU time is shorter. The porous plate can not be said to be more effective than the impermeable plate in terms of wave energy extraction and wave blocking, but it has the advantage of reducing the wave load and exchanging seawater.

Improvement of Abnormal Altitude Display of Radar Altimeter by Using Attenuation of Received Interference (수신 간섭의 신호 감쇠를 통한 전파고도계의 비정상 고도 시현 개선)

  • Kwon, Jung-Hyuk;Oh, Seung-Hyun;Seo, Byung-Il;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The purpose of this paper was to study how to improve the occurrence of abnormal altitude values of radio altimeter, due to RF interference signals during the flight of aircraft. In flight missions, since it performs a roll-out after several high maneuvers, accurate altitude must be displayed to effectively perform flight missions. Thus, a root cause analysis and trouble shooting were performed for the display of abnormal altitude values of radar altimeters, and a method of reducing RF interference signals by installing an attenuator was examined. Additionally, the verification results for the improvements are also described.