• Title/Summary/Keyword: roll diameter

Search Result 102, Processing Time 0.241 seconds

An Experimental Study on the Manoeuvrability of a Ship in Different GM and Trim Conditions (GM 및 종경사 변경에 따른 선박의 조종성능변화에 관한 실험적 연구)

  • Yun, Kunhang;Kim, Dong Jin;Yeo, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.230-240
    • /
    • 2020
  • The aim of this study was to investigate the manoeuvrability of a ship in different Center of Gravity (CG) conditions. Free Running Model Tests (FRMT), such as 35°turning circle tests, 20/20 zigzag manoeuvring tests, and 10/10 zigzag manoeuvring tests, were conducted in three GM and three trim conditions with 1/65.83 scaled KRISO Container Ship (KCS). The test results indicated that KCS in the lower GM condition and the trim by bow condition showed reduced advance and tactical diameter in turning circle tests and increased overshoot angles in zigzag tests, and those manoeuvring indices were strongly related with roll angle. In addition, sensitivity indices for three-axis CG position were suggested with prior research, and it showed that y-axis CG position significantly affected manoeuvrability of KCS due to the low GM. Therefore, in the case of KCS, it is evident that the roll angle during manoeuvre is closely related with manoeuvring indices.

Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology (반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Bae, Jong-Gu;Kim, Deuk-Tae
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF

PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill (PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

Study on the manufacturing technology of the annulus gear by using flow-forming method (Flow-forming 공법을 이용한 annulus gear 제조 기술 연구)

  • Lee, S.M.;Kim, B.J.;Beon, W.Y.;Kim, T.D.;Park, E.S.;Kwon, Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2011.06a
    • /
    • pp.261-262
    • /
    • 2011
  • Conventional automatic transmission system includes a hydrodynamic torque converter to transfer engine torque from an engine crank shaft to a rotatable input members, which are of complex design permitting them to serve several functions. These are clutches or brakes which couple the rotatable input member to member of a planetary gear set. The annulus gear for an automatic transmission is a monolithic gear having a set of gear teeth formed on an inner surface which is coupling with a set of planetary gear. In this study, the flow forming method is applied to the manufacturing of the annulus gear. This cold forming is proper method in order to manufacture dimensionally precise and round hollow components such as annulus gear. By pre-calculated amount of wall thickness reduction, the seamless tube of SAE1026 is compressed above its yield strength, plastically deformed and made to flow in several roll passes. According to this study, the desired geometry of the annulus gear can be achieved when the outer diameter and the thickness of the tube are properly decreased by compressed roll passes and the available material volume is easily forced to flow longitudinally over the shape of mandrel.

  • PDF

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

Development of roll bending process technology applied precision orthogonal feeding robot system (정밀 직교 피딩 로봇시스템 적용 롤 밴딩 공정 기술 개발)

  • Lim, Sang-Ho;Ahn, Sang-Jun;Yun, Gyeong-Yeol
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2022
  • This study evaluated the automated system of the roll bending process, which is one of the difficult processes. In the past, 20 cartridges were produced per hour. but Automation changed it to a process that produces 50 pieces per hour. The average value of production was 57.6 pieces per hour, error of repeatability was 0.03 mm, average roll diameter error value was 0.49 mm, average alignment error value was 0.09 mm and average process lead time was 43.21 seconds. This paper presented specific evaluation methods such as productivity, repeatability, defect rate, alignment defect rate, and process lead time. It is thought that the contents performed in this study will be helpful in the verification of other automation systems in the future.

Air-Water Countercurrent Flow Limitation in a Horizontal Pipe Connected to an Inclined Riser

  • Kang, Seong-Kwon;Chu, In-Cheol;No, Hee-Cheon;Chun, Moon-Hyun;Sung, Chang-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.548-560
    • /
    • 1999
  • An experimental investigation has been peformed to examine the effects of various geometrical parameters and an initial operating condition on the air-water countercurrent How limitation (CCFL) in a simulated PWR hot leg. A total of 118 experimental data for the onset of CCFL and zero liquid penetration were obtained for various combinations of test parameters. It was observe that the CCFL can be classified into three different categories: (the onset of CCFL, (the partial liquid delivery, and (r) the zero liquid penetration. The observed mechanisms of the onset of CCFL were different depending on the inlet water flow rate. The parametric effects of pipe diameter, horizontal pipe length, horizontal pipe length-to-diameter (L/D) ratio, and initial water level in the horizontal pipe of the test section on the onset of air-water CCFL were also examined. An empirical correlation for the onset of CCFL in a horizontal pipe connected to an inclined riser was developed in terms of Wallis flooding parameters for the low inlet water flow rate region. Comparisons of the present empirical correlation with the air-water CCFL data of large pipe diameters show that the present correlation agrees more closely with the experimental data than the existing CCFL correlations.

  • PDF

Numerical Prediction of the Outer Diameter for SAW Pipes Formed by Press-Brake Bending (프레스-브레이킹 굽힘 공정을 이용한 SAW 후육강관의 외경 예측을 위한 해석적 연구)

  • Park, G.B.;Kang, B.K.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • Press-brake bending is used to shape flat and thick plates into a targeted circular configuration without excessive localized thinning or thickening. A brake bending press called 'a knife press bending apparatus' has been widely adopted to manufacture thick, large and long pipe from initially thick plate. Submerged Arc Welded (SAW) pipes are also produced by employing press-brake bending. These pipes are mainly used for oil, natural gas and water pipelines. The principal process variables for press-brake bending can be summarized as stroke of the press-brake knife, the distance between both roll in the lower die, and the feeding length of the plate. Many combinations of these process variables are available, thus various pipe diameters can be realized. In the current study, a series of repetitive numerical simulations by feeding a thick plate with initial thickness of 25.4mm were conducted with the consideration of elastic recovery. Furthermore, an index for SAW pipe production is proposed which can be widely used in industry.

The study on the safety of Sea Lane for LSA (경량항공기용 착수대 안전성 확보에 대한 연구)

  • Shin, Dai-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, we surveyed the regulations of the Seaplane base and Sea Lane for the Light Sport Aircraft(LSA), and analyzed the water landing/takeoff roll distance of LSA in Korea. Based on the information, we presented the situation of the Sea Lane and the Sea Lane Protection Zone concept, to ensure the Rectangle type Sea Lane and the Omni direction type Sea Lane. We analyzed the availability elements of the safety of Sea Lane for LSA in Korea. A Rectangle type Sea Lane 350 meters long and 40 meters wide, the diameter 350 meters for the An Omni direction type Sea Lane.

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP

  • Malayjerdi, Ebrahim;Tabeshpour, Mohammad Reza
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.233-244
    • /
    • 2016
  • Tension Leg Platform (TLP) is a floating structure that consists of four columns with large diameter. The diffraction theory is used to calculate the wave force of floating structures with large dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three wave approach angles have been investigated. From the numerical results, it can be concluded that the wave force for different wave approach angle is different. There are some humps and hollows in the curve of wave forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference between Froude-Krylov and diffraction forces is important to obtain total wave force.