• 제목/요약/키워드: roll based manufacturing

검색결과 67건 처리시간 0.026초

링 롤링 공정이 재료에 미치는 영향에 대한 수치해석적 연구 (A Numerical Study on the Effects of Ring Rolling on Materials)

  • 서영진
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.22-27
    • /
    • 2020
  • Ring rolling is a type of forging for manufacturing large-diameter rings. Products manufactured by ring rolling are useful in the aerospace industry because of their excellent mechanical properties and high dimensional accuracy. The major components of the ring rolling process are a mandrel and main roll that shape the inside and outside of the ring, an axial roll that shapes the top and bottom of the ring, and a side rolls to position the ring. In this study, a simulation of ring rolling using finite element method (FEM) was performed. DEFORM, a commercial machining analysis program, was used. Based on the simulations, the mandrel feed force required for machining and the drive torque of the main roll were predicted. It was also possible to identify the metal flow caused by machining.

롤다이를 이용한 튜브 축관공정 개발 (Development of Tube End-forming Process using Roll Die)

  • 김영환
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.121-126
    • /
    • 2011
  • An accumulator placed on the refrigerant cycle pipe lines is a part to relax fluctuations of pressure within the pipe lines and stabilize refrigerants flowed into pipe. The accumulator has been mainly manufactured by the process of tube spinning using CNC(Computer Numerical Control) lathe. However, this process has the defects which are low productivity per hour and high cost. For that reason, tube end-forming using roll die is actively being developed, recently. The purpose of this study is to develope the tube end-forming process using roll die in order to manufacture the accumulator for the refrigeration pipe lines. First, the process design of tube end-forming was performed based on specification of product, and then was verified with FE analysis. Also, the effects of friction coefficient and revolution speed of roll die on forming load were investigated. The analytical results were applied in the final process design of tube end-forming. Finally, tube end-forming test was carried out to verify the validity of the FE analysis and the process design.

롤투롤 슬롯-다이 대면적 코팅 공정 최적화를 위한 통계적 모델링 방법 (A Statistical Analysis for Slot-die Coating Process in Roll-to-roll Printed Electronics)

  • 박장훈;이창우
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.23-29
    • /
    • 2013
  • Recent advances in printing technology have increased the productivity of the roll-to-roll (R2R) printing process for printed circuitry. In the R2R printed electronics, characteristics of printed and coated layers are one of the most important issues that determine the functional quality of final products. The slot-die technology can coat a large area with high uniformity using low-viscosity materials; determining the process parameters is important to obtain excellent coating qualities. In this study, a viscocapillary model was used to predict qualities of coated layers and patterns. On the basis of analysis results, a novel meta model was derived using design of experiment methodology to improve accuracy. Sensitivity analysis was performed to define major parameters in R2R slot-die coating process. The coating speed was found to most significantly affect the coated layer thickness and was easily controlled. The performance of the proposed model is verified through experimental studies. Based on the statistical analysis results, R2R slot die process can be optimized to guarantee a desired thickness.

열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구 (Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill)

  • 변상민
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • 김동수;김충환;김명섭
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

대면적 미세 가공공정 원천기술 개발 (Core Technology Development for Micro Machining Process on Large Surface)

  • 이석우;이동윤;송기형;강호철;김수진
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.769-776
    • /
    • 2011
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions is now being paid to the development of micro-pattern machining technology. Compared with flat molds, roll molds have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous molding. This paper presents the state-of-the-art of the micro pattern machining technology on the roll molds and introduces some research results on the machining process technology. The copper and nickel-phosphorous-alloy plating process, machining process technology for uniform micro patterns. micro cutting simulation and the real time monitoring system for micro machining are summarized. The developed technologies have led the complete localization of the prism sheets and will be applied to the direct forming process with succeeding research & development.

A LATERAL CONTROL ALGORITHM FOE ROLL-TO-ROLL WEB SYSTEM BASED ON BACK-STEPPING APPROACH

  • Choi, Kyung-Huyn;Thanh, Tran Trung;Ko, Jeong-Beom;Kim, Su-Jin;Doh, Yang-Hoi;Kim, Dong-Soo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1091-1097
    • /
    • 2008
  • Roll-to-roll based manufacturing plays an important role in producing devices at high speed with lower production cost in printed electronics and publishing industry. Web lateral control is one of the most important factors in improving the quality of product and contributes a considerable point in making devices at micrometer-level accuracy. In recent years, most algorithms proposed for web lateral control base on the Shelton‘s model for designing the feedback control system using the PI controller. Experimental results showed that the existing models do not fully describe the characteristics of the lateral dynamics for some typical operating conditions and so result in poor control algorithms. In this paper, a new lateral control algorithm is proposed for web lateral control system based on back-stepping approach. The outcome of this study proves the reliability throughout simulation results in Matlab/Simulink and comparison with the algorithms based on the existing results.

  • PDF

언더레일의 롤포밍 공정 시뮬레이션에 관한 연구 (A Study on Roll Forming Simulation of Under Rail)

  • 정상화;이상희;김광호;김재상;김종태
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

연속공정기반 저온 상압 원자층 증착 시스템을 이용한 유무기 멀티레이어 배리어 박막에 관한 연구 (A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System)

  • 이재욱;김현범;최경현
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, the organic material Poly(methyl methacrylate) PMMA is used with inorganic $Al_2O_3$ to fabricate organic-inorganic multilayer barrier thin films. The organic thin films are developed using a roll-to-roll electrohydrodynamic atomization system, whereas the inorganic are grown using a roll-to-roll low-temperature atmospheric pressure atomic layer deposition system. For the first time, these two technologies are used together to develop organic-inorganic multilayer barrier thin films in atmospheric condition. The films are grown under optimized parameters and classified into three classes based on the layer structures, when the total thickness of the barrier is maintained at ~ 160 nm. All classes of barriers show good morphological, optical and chemical properties. The $Al_2O_3$ films with a low average arithmetic roughness of 1.58 nm conceal the non-uniformity and irregularities in PMMA thin films with a roughness of 5.20 nm. All classes of barriers show a notably good optical transmission of ~ 85 %. The hybrid organic-inorganic barriers show water vapor and oxygen permeation in the range of ${\sim}3.2{\times}10^{-2}g/m^2/day$ and $0.015cc/m^2/day$ at $23^{\circ}C$ and 100% relative humidity. It has been confirmed that it can be mass-produced and used as a low-cost barrier thin film in various printing electronic devices.

폴리머 배터리 전극제조용 압연 고온롤 표면의 형상 및 유한요소 열변형 해석 (Shapes and Thermomechanical Analyses of a Hot Roll for Manufacturing Electrodes of Polymer Batteries)

  • 김철;장동수;유선준
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.847-854
    • /
    • 2007
  • The battery electrode of a mobile phone is made of layered polymer coated on aluminum foils and the hot rolling process is applied to increase the density per volume of an electrode for a high capacity battery. The flatness of batteries surfaces should be less than $2{\mu}m$. To satisfy the required flatness, the deformation of roll surface due to bending and heating of the roll should be minimized. Complicated hot oil paths of $100^{\circ}C$ inside the roll are required for heating the polymer layers. FEA was used to calculate thermal deformations and temperatures distributions of the roller. Based on FEA, a modified surface curvature called a crown roll was suggested and this gave the area of 30% improved flatness compared with a flat roll. The flat roll satisfied the flatness of $2{\mu}m$ in the length of 340 mm and the crown roll resulted in the longer length of 460 mm. Experiments to measure the temperature distribution and thermal strain were performed and compared with FEA. There were only 6% difference between two results.