• Title/Summary/Keyword: roll and yaw

Search Result 269, Processing Time 0.025 seconds

Streamlined Rotors Mini Rotorcraft : Trajectory Generation and Tracking

  • Beji Lotfi;Abichou Azgal
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.87-99
    • /
    • 2005
  • We present in this paper the stabilization (tracking) with motion planning of the six independent configurations of a mini unmanned areal vehicle equipped with four streamlined rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of other motions. The remaining dynamics are linearly approximated around a small roll and pitch angles. It will be shown that the system presents a flat output that is likely to be useful in the motion generation problem. The tracking feedback controller is based on receding horizon point to point steering. The resulting controller involves the lift (collective) time derivative for what flatness and feedback linearization are used. Simulation tests are performed to progress in a region with approximatively ten-meter-buildings.

A Model-based 3-D Pose Estimation Method from Line Correspondences of Polyhedral Objects

  • Kang, Dong-Joong;Ha, Jong-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.762-766
    • /
    • 2003
  • In this paper, we present a new approach to solve the problem of estimating the camera 3-D location and orientation from a matched set of 3-D model and 2-D image features. An iterative least-square method is used to solve both rotation and translation simultaneously. Because conventional methods that solved for rotation first and then translation do not provide good solutions, we derive an error equation using roll-pitch-yaw angle to present the rotation matrix. To minimize the error equation, Levenberg-Marquardt algorithm is introduced with uniform sampling strategy of rotation space to avoid stuck in local minimum. Experimental results using real images are presented.

  • PDF

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Implementation of Muscular Sense into both Color and Sound Conversion System based on Wearable Device (웨어러블 디바이스 기반 근감각-색·음 변환 시스템의 구현)

  • Bae, Myungjin;Kim, Sungill
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.642-649
    • /
    • 2016
  • This paper presents a method for conversion of muscular sense into both visual and auditory senses based on synesthetic perception. Muscular sense can be defined by rotation angles, direction changes and motion degrees of human body. Synesthetic interconversion can be made by learning, so that it can be possible to create intentional synesthetic phenomena. In this paper, the muscular sense was converted into both color and sound signals which comprise the great majority of synesthetic phenomena. The measurement of muscular sense was performed by using the AHRS(attitude heading reference system). Roll, yaw and pitch signals of the AHRS were converted into three basic elements of color as well as sound, respectively. The proposed method was finally applied to a wearable device, Samsung gear S, successfully.

The effect on the position precision by load in M.C. (머시닝 센터에서 하중이 위치결정정밀도에 미치는 영향)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.143-147
    • /
    • 1998
  • As the accuracy of manufactured goods needed high-accuracy processing has made the efficiency of NC and measurment technology develop, the innovation of machine tools has influence the development of the semi-conductor and optical technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics - Stylus instrument method, STM, SEM, Laser interferometer method - which are used for measuring the movement accuracy of machine tools. The movement error factors in movement accuracy are expressed as yaw, roll, and pitch etc. Machining center has 21 movement error factors including of 3 axies joint errors because that has 3 axies and has been measured as the standard of the unloaded condition until now inspite of getting static, dynamic, and servo-gain errors in the case of expending the error range. Therefore, this study tries to measure position accuracy according to loading on the X-Y table of the machining center.

  • PDF

Flight Control Experiment of High-Speed Aero-Levitation Electric Vehicle Scale-Model in Wind-Tunnel (공기부상 초고속 운행체 축소모델의 풍동내 비행제어 실험)

  • Park, Young-Geun;Choi, Seung-Kie;Cho, Jin-Soo;Song, Yong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.246-253
    • /
    • 2005
  • An experimenal study on flight control of high-speed AEV(Aero-levitation Electric Vehicle) scale model in wind-tunnel is conducted. The AEV is to fly at very low altitude in predesigned track so that it is always under the wing-in-ground effect. The experiment is intended to fly the scale model to follow the predesigned altitude schedule while holding its attitude (pitch, roll, and yaw). Especially, the altitude changes for climb, cruise, and descent with constant pitch angle are most important maneuvers. The experiment shows that the required mission flights can be performed with appropriate sensors, processors, and actuators.

A Study on the Dynamic Behaviors of Toroidal Infinitely Variable Transmission (토로이달 무단변속기 동적 거동에 관한 연구)

  • Jang Siyoul;Choi Wan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.348-354
    • /
    • 2003
  • An analysis of the dynamic behavior between disk and roller has been performed when the torque is transmitted to toroidal IVT (Infinitely Variable Transmission). The contact area, shape and pressure with elliptical shapes between disk and roller are computed as the transmission ratios are changed. This study will give the information of contact shapes between roller-input dist and roller-output disk which are working under the most severe condition. The computed results are expected to guide the design criteria for the enhanced endurance li(e. Furthermore, the investigation of contact behaviors is very crucial to develop the traction oil that the efficiency of IVT system is most dependent on.

  • PDF

Study on 3 DoF Image and Video Stitching Using Sensed Data

  • Kim, Minwoo;Chun, Jonghoon;Kim, Sang-Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4527-4548
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from inertia sensors to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw, pitch, and roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data. In addition, the stitching accuracy of video data was improved using the same sensed data, with discrete calculation of homograph matrix. The experimental results for stitching accuracies and speed using sensed data are presented in this paper.

Analysis of the Torque Characteristics of a Multi-Degrees of Freedom Surface Permanent-Magnet Motor

  • Kang, Dong-Woo;Go, Sung-Chul;Won, Sung-Hong;Lim, Seung-Bin;Lee, Ju
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.36-39
    • /
    • 2010
  • The multi-degrees of freedom surface permanent-magnet motor (Multi-D.O.F. SPM) has several degrees of freedom operations that are defined as the "roll", "yaw", and "pitch". Normally, the torque that is generated to rotate a rotor includes ripples. The analysis of the torque ripples is important for improving motor performance. In terms of the electric analysis, torque ripple occurs as a result of many factors, including the rotor and stator structures, the distribution of the air-gap flux density, and the waveform of the current in the coils. In particular, the torque ripple is an important factor in the stable operation of the Multi-D.O.F. SPM. Therefore, in this work, the torque ripple was analyzed using various types of magnetization for the permanent magnet. An improved model was proposed for the Multi-D.O.F. SPM based on this analysis.

The Kalman Filter Design for the Transfer Alignment by Euler Angle Matching (오일러각 정합방식의 전달정렬 칼만필터 설계)

  • Song, Ki-Won;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1044-1050
    • /
    • 2001
  • This paper presents firstly the method of Euler angle matching designing the transfer alignment using the attitude matching. In this method, the observation directly uses Euler angle difference between MINS and SINS so it needs to describe the rotation vector error to the Euler angle error. The rotation vector error related to the Euler angle error is derive from the direction cosine matrix error equation. The feasibility of the Kalman filter designed for the transfer alignment by Euler angle matching is analyzed by the alignment error results with respect to the roll angle the pitch angle, and the yaw angle matching.

  • PDF