• Title/Summary/Keyword: roll and yaw

Search Result 271, Processing Time 0.032 seconds

Thrust Vector Control for a Launch Vehicle (발사체 추력벡터 제어)

  • 최재원;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.610-613
    • /
    • 1995
  • In addition to propulsive force to a flying vehicle, a rocket propulsion system can provide moments ro rotatate the flying vehicle and thus provide control of the vehicle's attitude and flight path. By controlling the direction of the thrust vectors, it is possible to control a vehicle's pitch, yaw, and roll motions. In this paper, we will introduce general thrust vector control mechanisms.

  • PDF

PC-based 3D graphic spacecraft simulator using OpenGL

  • Kim, Seung-Jun;Lee, Sang-Wook;Jeong, Woo-Seong;Ahn, Byung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.6-68
    • /
    • 2002
  • $\textbullet$ We solved the attitude regulation and tracking problems of spacecrafts. $\textbullet$ We developed a PC-based 3D spacecraft simulator using OpenGL. $\textbullet$ We considered the rigid spacecrafts with gas-jet and reaction wheel actuator. $\textbullet$ In order to verify the effectiveness of the simulator, we applied the output-based controller $\textbullet$ Spacecraft models are animated by roll-pitch-yaw angles, constantly processed by numerical method.

  • PDF

A Control Scheme for Stabilizing a Two-Axes Antenna System (이축 안테나 시스템의 안정화를 위한 제어 기법)

  • Lim, Joong-Soon;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.209-212
    • /
    • 1987
  • This paper presents a control scheme to stabilize a two-axes microwave antenna system which is located on a ship and is subject to roll, pitch and yaw(RPY) motions. The scheme first computes the compensated angular positions of the antenna for RPY disturbances through coordinate transformations, and then use a servo con roller of PID type for each axis to track the compensated position command with a good transient behavior.

  • PDF

공작기계 슬라이더 운동오차측정시스템 개발

  • 황상옥;정무영;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.43-46
    • /
    • 1992
  • Measurement of straightness errors (vertical, horizontal),and angular error (roll, pitch, yaw) have been classified as difficult tasks in the machine tool metrology field. In this paper, computer aided measurement techniques are proposed using quadrant type photo pin diode. In the developed system, three photo diodes are mounted on the positioning table to detect the five degrees of movement error simultaneously. Outputs from the photo diode are analyzed in the computer and are displayed graphically.

A Proposal of a Novel Structured 3-DOF Spherical Motor (새로운 3-자유도 구형 모터의 제안)

  • Lee, Dong-Cheol;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.823-824
    • /
    • 2006
  • This paper proposes a novel structured 3-DOF(Degree-of-Freedom) spherical motor. 3-DOF spherical motor presents some attractive features by combining pitch, roll, yaw motion in a single joint. The proposed motor has pole which is electromagnetic in stator and rotor. poles produce magnetic flux through by exciting current then produce torque. We show a novel structured rotor to avoid mechanical overlapping of each coil in rotor. The validity of the analysis is confirmed by 3D finite element method.

  • PDF

Design of Static Output Feedback Controllers for Rollover Prevention (차량 전복 방지를 위한 정적 출력 피드백 제어기 설계)

  • Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • This paper presents static output feedback LQ and $H_{\infty}$ controllers for rollover prevention. Linear quadratic static output feedback controllers have been proposed for rollover prevention in such a way to minimize the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if $H_{\infty}$ controller is designed. To avoid full-state measurement for feedback requirement or sensitiveness of an observer to nonlinear model error, static output feedback is adopted. To design static output feedback controllers, Kosut's method is adopted because it is simple to calculate. Differential braking and active anti-roll bar are adopted as actuators that generate yaw and roll moments, respectively. The proposed method is shown to be effective in preventing rollover through the simulations on nonlinear multi-body dynamic simulation software, CarSim.

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Implementation of Mutual Conversion System between Body Movement and Visual·Auditory Information (신체 움직임-시·청각 정보 상호변환 시스템의 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.362-368
    • /
    • 2018
  • This paper has implemented a mutual conversion system that mutually converts between body motion signals and both visual and auditory signals. The present study is based on intentional synesthesia that can be perceived by learning. The Euler's angle was used in body movements as the output of a wearable armband(Myo). As a muscle sense, roll, pitch and yaw signals were used in this study. As visual and auditory signals, MIDI(Musical Instrument Digital Interface) signals and HSI(Hue, Saturation, Intensity) color model were used respectively. The method of mutual conversion between body motion signals and both visual and auditory signals made it easy to infer by applying one-to-one correspondence. Simulation results showed that input motion signals were compared with output simulation ones using ROS(Root Operation System) and Gazebo which is a 3D simulation tool, to enable the mutual conversion between body motion information and both visual and auditory information.

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.