• Title/Summary/Keyword: role stress

Search Result 2,682, Processing Time 0.03 seconds

A Focus Group Interview(FGI) on Experience During Clinical Fieldwork of Students in Occupational Therapy (작업치료과 학생들의 임상실습 경험에 대한 포커스그룹 인터뷰)

  • Kang, Jin-Ho;Nam, Young-Ok;Oh, Myung-Hwa
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.299-309
    • /
    • 2019
  • The purpose of this study was to investigate about student's experiences in occupational therapy through clinical fieldwork, such as the change in perception of occupational therapy, the stress that students experience, and the satisfaction of clinical fieldwork. We conducted a focus group interview with 10 participants to see what they experienced during the clinical fieldwork. The contents of the interview were recorded and conducted, and the meaning was analyzed according to the focus group interview procedure through repeated listening. Components were psychological experience, professional experience, environmental experience, changes of values, and behavioral changes. In psychological experience, he experienced anxiety and burden. Experiential experience was the connection of theory and clinical experience and realization of major knowledge. In the environmental experience, we experienced clinical guidance management system, and the change of values experienced change of perception of occupational therapy and change of perception of disabled person. Finally, behavioral changes have experienced an active response through clinical practice experience. Clinical fieldwork is a basic element that prepares students to become occupational therapists. It affects the role of occupational therapist and perception performance through various experiences in new environment. It is thought that the efforts of the institution are needed. The results of this study will help occupational therapists to direct clinical fieldwork in the right direction in clinical fieldwork.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.

Neuroprotective Effect of Insamyangyung-tang (인삼양영탕(人蔘養營湯)의 산화적 stress에 대한 뇌세포 보호효과)

  • Kim, Seung-Hyun;Lee, Chang-Hoon;Lee, Jin-Moo;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Purpose: Oxidative stress was thought to play a critical role in neurodegenerative disease. Many in vivo and in vitro reports explained the possible pathway of human aging. But in therapeutic aspects, there was no clear answers to prevent aging associated with neural diseases. In this study, we investigated the antioxidant and neuroprotective effects of the Insamyangyung-tang (IYT). Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3- ethylbenzothiazoline-6- sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of IYT in vitro. We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The $IC_{50}$ values were $571.6{\mu}g/m{\ell}$ and $202.3{\mu}g/m{\ell}$ in DPPH and ABTS assay respectively. Total polyphenolic content was 1.05%. In SH-SY5Y culture, IYT significantly increased the decreased cell viability by 6-OHDA at the concentrations of $10{\mu}g/m{\ell}$ in pre-treatment group, $10-100{\mu}g/m{\ell}$ in post-treatment group, and $100{\mu}g/m{\ell}$ in co-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in IYT treated group. In mesencephalic dopaminergic cell culture, the IYT group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of $0.2{\mu}g/m{\ell}$. Conclusion: These results showed that IYT has antioxidant and neuroprotectctive effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell.

Change of Peroxiredoxin-5 Expression by Curcumin Treatment in Cerebral Ischemia (허혈성 대뇌손상시 curcumin 투여에 의한 peroxiredoxin-5 발현의 변화)

  • Gim, Sang-Ah;Koh, Phil-Ok
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.129-139
    • /
    • 2016
  • Curcumin plays a protective role in brain injury through its anti-oxidant and anti-inflammatory activities. Moreover, peroxiredoxin-5 exerts a protective effect against oxidative stress. The aim of this study was to investigate whether curcumin modulated the peroxiredoxin-5 expression in focal cerebral ischemic animal model. Middle cerebral artery occlusion(MCAO) was performed to induce cerebral ischemic injury in rats. Adult male rats were injected intraperitoneally with vehicle or curcumin(50mg/kg B.W.) 1 h after MCAO and cerebral cortex tissues were collected 24 h after MCAO. Photographs of hematoxylin and eosin staining showed that MCAO induced necrotic changes with scalloped shrunken form and apoptotic changes with nuclear chromatin condensations. However, curcumin treatment attenuated MCAO-induced histopathological changes. Moreover, this study clearly showed that peroxiredoxin-5 expression was decreased in MCAO operated animal with vehicle using a proteomics approach. However, this decrease in peroxiredoxin-5 expression was attenuated by curcumin treatment. Reverse-transcription PCR and Western blot analyses confirmed that curcumin treatment alleviated the MCAO injury-induced decrease in peroxiredoxin-5 expression(p<0.05). These results demonstrated that curcumin regulates peroxiredoxin-5 expression in MCAO animal model. In conclusion, our findings suggest that curcumin exerts a neuroprotective effect in cerebral ischemia by attenuating the MCAO-induced decrease in peroxiredoxin-5 expression.

In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice

  • Ning Wang ;Linman Li ;Puyu Zhang;Muhammad Aamer Mehmood ;Chaohua Lan;Tian Gan ;Zaixin Li ;Zhi Zhang ;Kewei Xu ;Shan Mo ;Gang Xia ;Tao Wu ;Hui Zhu
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.682-697
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

Predictors of Burnout among Staff in Long-term Care Facilities for the Elderly (노인장기요양보호 인력의 소진 예측 요인)

  • Lee, Choo-Jae
    • 한국노년학
    • /
    • v.31 no.1
    • /
    • pp.97-109
    • /
    • 2011
  • The purpose of this work is to examine how work stressors are related to the burnout among staff in long-term care facilities for the elderly. This study offers some responses to a growing stress and burnout for the long-term care workers. The demand for long-term care workers is set to rise in light of an increasing share of older people and dependent elderly. Long-term care workers provide long-term care services to persons with a reduced degree of functional, physical or cognitive capacity. Cross-sectional survey data were collected from 216 staff in long-term care facilities. The standardised Maslach Burnout Inventory(MBI) was used to assess levels of burnout in long-term care workers. The MBI consists of 22 items using a 5-point Likert scale, measuring three sub-scales of burnout; Emotional exhaustion, Depersonalization, and Personal accomplishment. Data were analyzed using regression. This study is empirically tested the degree of association between burnout and its antecedents. The majority of differences in burnout could be explained by work stressors such as client relationship, job overload, job role conflict, and conflicts with clients' family. The study also identified workers' perceptions of their image in society and emotional support as predictors of burnout. Therefore long-term care facilities are encouraged to review their practices so that workers well-being is supported. The study findings suggest attention for organizational oriented initiatives to cope with burnout.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Application of Near-Infrared Spectroscopy in Neurological Disorders: Especially in Orthostatic Intolerance (신경계 질환에서 근적외선분광분석법의 적용: 기립불내증을 중심으로)

  • Kim, Yoo Hwan;Paik, Seung-ho;Phillips V, Zephaniah;Seok, Hung Youl;Jeon, Nam-Joon;Kim, Beop-Min;Kim, Byung-Jo
    • Journal of the Korean neurological association
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2017
  • Near-infrared spectroscopy (NIRS), a noninvasive optical method, utilizes the characteristic absorption spectra of hemoglobin in the near-infrared range to provide information on cerebral hemodynamic changes in various clinical situations. NIRS monitoring have been used mainly to detect reduced perfusion of the brain during orthostatic stress for three common forms of orthostatic intolerance (OI); orthostatic hypotension, neurally mediated syncope, and postural orthostatic tachycardia syndrome. Autonomic function testing is an important diagnostic test to assess their autonomic nervous systems for patients with symptom of OI. However, these techniques cannot measure dynamic changes in cerebral blood flow. There are many experimentations about study of NIRS to reveal the pathophysiology of patients with OI. Research using NIRS in other neurologic diseases (stroke, epilepsy and migraine) are ongoing. NIRS have been experimentally used in all stages of stroke and may complement the established diagnostic and monitoring tools. NIRS also provide pathophysiological approach during rehabilitation and secondary prevention of stroke. The hemodynamic response to seizure has long been a topic for discussion in association with the neuronal damage resulting from convulsion. One critical issue when unpredictable events are to be detected is how continuous NIRS data are analyzed. Besides, NIRS studies targeting pathophysiological aspects of migraine may contribute to a deeper understanding of mechanisms relating to aura of migraine. NIRS monitoring may play an important role to trend regional hemodynamic distribution of flow in real time and also highlights the pathophysiology and management of not only patients with OI symptoms but also those with various neurologic diseases.

Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과)

  • Chung-Mu Park;Hyun An;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.