• Title/Summary/Keyword: role of additives

Search Result 109, Processing Time 0.02 seconds

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

윤활유 첨가제에 따른 마멸분 화상해석

  • 서영백;이충엽;박홍식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.180-189
    • /
    • 1998
  • This paper was undertaken to do shape analysis of wear debris on oiliness agent and extreme pressure agent. The lubricating wear test was performed under different experimental conditions using the wear test device was made in our laboratory and were- specimens of the pin on disk type was rubbed in paraffine series base oil by materials, varying applied load, sliding distance, oil additives such as stearine acid, DBDS, TCP. The four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) on a kind of the additives are different on applied load and sliding distance and Its are affected by absorbed film and reaction film. DBDS and TCP have a role of extreme pressure agent but a role of absorbed film of stearic acid decrease in high load. The maximum wear volume on applied load be in existence in three kinds of the specimens because of reaction characteristics of the additives.

  • PDF

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

Effects of Co-Existent Additives and the Role of Reacted Surface Film on the Friction with an Organo-Molybdenum Compound

  • Kim, Young-Hwan
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 1994
  • In order to elucidate the effects of co-existing additives (S$_{8}$, TBP: Tri butyl phosphate, ZnDTP: Zinc-dialkyl dithiophosphate) and the role of reacted surface film on the friction behavior of MoDTP (molybdenum dialkyl dithiophosphate), a friction experiment using a dual circular pipe edge surface type friction tester and XPS (X-ray photoelectronic spectrum) surface analysis were conducted. Friction reduction with MoDTP lubricant was proved to be greatly influenced by co-existing additive species. It was dependent on the properties of the film formed through the reaction between the additive and the surface. Phosphate film reduced the friction coefficient of MoDTP through suppression of diffusion of Mo compounds towards the metal substrate. On the other hand, sulfate film, which is inherently rich in lattice defects, did not lead to any appreciable friction reduction with MoDTP since the diffusion of the Mo compound towards the metal substrate was not effectively suppressed. With ZnDTP additive, the sulfide film formed through decomposition greatly influenced the lubricating performance of MoDTP. As such, properties of surface films formed from additives were proved to yield significant influence on the lubrication performance of MoDTP.

Investigation of the Effect of Solution Acidity and Organic Additives on the Electrodeposition of Trivalent Chromium Ions (3가크롬 이온의 전착 반응에 용액 산도 및 유기물 첨가제가 미치는 영향 연구)

  • Lee, Joo-Yul;Van Phuong, Nguyen;Kang, Dae-Keun;Kim, Man;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.297-303
    • /
    • 2010
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of electroreduction of trivalent chromium ions and solution stability. It was found that solution acidity controlled at pH 2.5 showed the widest current range for bright electrodeposits in the presence of PEG additives, which reduced the local current intensification at high current densities. Through complex interaction between PEG additives and hydrogen ion, that is, solution acidity, electrode potential was moved in the negative direction in the bulk solution, while it shifted in the positive when electric potential was scanned. In conjunction with electrochemical quartz crystal microbalance (EQCM), it was found that PEG additives had a role in promoting the electron transfer to trivalent chromium ion complexes in bulk solution and their adsorption at the electrode surface as well as interfering with hydrogen ion reduction process below pH 2.5. The PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at low speed.

Organic additive effects in physical and electrical properties of electroplated Cu thin film

  • Lee, Yeon-Seung;Lee, Yong-Hyeok;Gang, Seong-Gyu;Ju, Hyeon-Jin;Na, Sa-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. In this study, we investigated the characteristics of electroplated Cu films according to the variation of concentration of organic additives. The plating electrolyte composed of $CuSO_4{\cdot}5H_2O$, $H_2SO_4$ and HCl, was fixed. The sheet resistance was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the organic additives play an important role in formation of Cu film with lower resistivity by EPD.

  • PDF

Effects of Additives on the Characteristics and Microstructure of $UO_2$ Pellet ($UO_2$ 소결체의 특성 및 미세구조에 미치는 첨가제의 영향)

  • 유호식;이신영;이승재;강권호;김형수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.660-664
    • /
    • 2000
  • Effect of various kinds of additive such as AlOOH, Al(OH)3, Al2Si2O5(OH)4, Nb2O5, TiO2 and MgO on the properties and microstructures of UO2 pellet has been examined. All the tested dopants had played a role to reduce sintered density and open porosity. It was revealed that the addition of TiO2 made pellet more stable thermally. UO2 pellet doped with 0.2wt% TiO2 was swelled rather than densified after annealing for 24 hrs at 1$700^{\circ}C$. It was attributed to large pore with spherical shape. Titinia and silicon coexisted with Al element were more effective to increase grain size than other additives. It could be also revealed that the formation of liquid phase was the main cause of grain growth.

  • PDF

A Study on the Effect of Porous CaCO3 on Micro-cellular Plastics as an Additive for Nucleation (다공성 $CaCO_{3}$가 발포핵제로서 초미세 발포에 미치는 영향)

  • Lee, Dong-Wook;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.991-996
    • /
    • 2004
  • Plastics are widely used in industry, because they are light, easily manufactured, and have high specific strength. And many researches to increase the strengths and to reduce the price are being conducted at now. One of these researches is concerning to additives. Foaming techniques are used to endow insulation properties, to improve specific strength, or reduce the material cost. Due to their unique properties, foamed plastics are applied to refrigerator, pipe, and insulators. Micro-cellular foaming is the latest foaming technique that was invented at 1980 in MIT. It is known that many tiny small cells are generated in the polymer matrices and micro-cellular foamed plastics show relatively high specific strength. We investigated the role of CaCO3 which is one of the most widely used additives in plastics industry as an additive for nucleation in view of cell morphology. CaCO3 used in this paper was treated to increase the dispersibility and to lower the density, so it has many pores at his body. Two experiments were conducted, in order to check the role of an additive for nucleation. One is compound-ability and the other one is role of nucleation agents.

  • PDF

A Study on the Effect of physico-chemical Factors in Wear Mechanism in a Lubricated Concentrated Contact (II) (윤활시스템에서 마모메카니즘에 미치는 물리화학적 영향에 관한 연구(II))

  • 최웅수;권오관;문탁진;유영흥
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.43-55
    • /
    • 1988
  • A Study on the effect of the additives in lubricating oil was investigated on the basis of the thermal activated wear theory in terms of their wear behaviours, using four ballwear machine. The sample oils, which included diethyl-3, 5-di-t-butyi-4-hydroxy-benzyl phosphonate (DEP), ZDDP and TCP additives respectively, showed distinct wear characteristics depending upon the bulk oil temperature and the sliding velocity. The newly synthesized additive, viz., DEP showed excellent antiwear performance cornpared with the conventional additives, ZDDP and TCP. On the basis of the experimental results, it is reduced that the wear mechanism of the conventional additives, viz., ZDDP and TCP is the protective film formation and their antiwear capability is depending upon the shearing strength of the film formed. On the other hand, the new additive, DEP showed that the secondary activation energy was much eliminated and so, the thermal instability was reduced by the hydrogen scavenging reaction of the new additive, which was virtually an endothermic reaction process.In conclusion, a new concept of antiwear mechanism is estabilished and testified. And new chemical, which showed the function of hydrogen and free radical scavenging role, is synthesized and introduced as the new, highly antiwear effective lubricating oil additive.

A comparison of analgesic efficacy and safety of clonidine and methylprednisolone as additives to 0.25% ropivacaine in stellate ganglion block for the treatment of complex regional pain syndrome: a prospective randomised single blind study

  • Sreyashi Naskar;Debesh Bhoi;Heena Garg;Maya Dehran;Anjan Trikha;Mohammed Tahir Ansari
    • The Korean Journal of Pain
    • /
    • v.36 no.2
    • /
    • pp.216-229
    • /
    • 2023
  • Background: The role of the sympathetic nervous system appears to be central in causing pain in complex regional pain syndrome (CRPS). The stellate ganglion block (SGB) using additives with local anesthetics is an established treatment modality. However, literature is sparse in support of selective benefits of different additives for SGB. Hence, the authors aimed to compare the efficacy and safety of clonidine with methylprednisolone as additives to ropivacaine in the SGB for treatment of CRPS. Methods: A prospective randomized single blinded study (the investigator blinded to the study groups) was conducted among patients with CRPS-I of the upper limb, aged 18-70 years with American Society of Anaesthesiologists physical status I-III. Clonidine (15 ㎍) and methylprednisolone (40 mg) were compared as additives to 0.25% ropivacaine (5 mL) for SGB. After medical treatment for two weeks, patients in each of the two groups were given seven ultrasound guided SGBs on alternate days. Results: There was no significant difference between the two groups with respect to visual analogue scale score, edema, or overall patient satisfaction. After 1.5 months follow-up, however, the group that received methylprednisolone had better improvement in range of motion. No significant side effects were seen with either drug. Conclusions: The use of additives, both methylprednisolone and clonidine, is safe and effective for the SGB in CRPS. The significantly better improvement in joint mobility with methylprednisolone suggests that it should be considered promising as an additive to local anaesthetics when joint mobility is the concern.