• 제목/요약/키워드: rod bundle

검색결과 134건 처리시간 0.023초

복합혼합날개를 장착한 5${\times}$5 봉다발에서 부수로 혼합 및 임계열유속 실험 연구 (Experimental Study on the Thermal Mixing and the Critical Heat Flux in the 5${\times}$5 Rod Bundle with the Hybrid Mixing Vane)

  • 강경호;신창환;추연준;윤영중;박종국;문상기;천세영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2303-2308
    • /
    • 2007
  • Experiments were performed to determine the thermal (or turbulent) diffusion coefficient (TDC) and to investigate the critical heat flux (CHF) performance in the 5${\times}$5 rod bundle with 5 unheated rods which are supported by Hybrid Mixing Vane. In this study, HFC-134a fluid was used as working fluid and the fluid temperature were measured in the important subchannels. To determine the TDC value, the measured fluid temperatures were compared with the predicted values obtained from the MATRA code. The best optimized value of ${\beta}$ was found to be 0.02 by considering prediction statistics, i.e., average and standard deviations of the differences between the experimental results and code calculations. Using the best optimized value of ${\beta}$ as 0.02, the MATRA code predicts the test results of the fluid temperature within ${\pm}$1.0 % of error. According to the experimental results on CHF of 5 non-heating guide tubes, the case with non-heating guide tube showed a little good performance in terms of CHF.

  • PDF

전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software)

  • 이공희;정애주
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

Prediction of Critical Heat Flux in Fuel Assemblies Using a CHF Table Method

  • Chun, Tae-Hyun;Hwang, Dae-Hyun;Bang, Je-Geon;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.534-539
    • /
    • 1997
  • A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor.

  • PDF

An Experimental Study of Pressure Drop Correlations for Wire-Wrapped Fuel Assemblies

  • Chun, Moon-Hyun;Seo, Kyong-Won;Park, Seok-Ki;Nam, Ho-Yun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.403-409
    • /
    • 2001
  • The main objective of the present study is to perform an experimental evaluation of five existing correlations for the subchannel pressure drop analysis of a wire-wrapped fuel assembly. For this purpose, a series of water experiments have been performed using a helical wire-wrapped 19-pin fuel assembly for various test parameters. Four different test sections with different pitch to rod diameter ratios (P/D) and wire lead length to rod diameter ratios (H/D) have been fabricated. A series of pressure drop measurements were made to obtain friction factors for these four test sections. The new data along with existing data are used to evaluate existing correlations. Both the original and the simplified Cheng and Todreas correlations give the best agreement with experimental data for all flow regions.

  • PDF

DEVELOPMENT OF AN LES METHODOLOGY FOR COMPLEX GEOMETRIES

  • Merzari, Elia;Ninokata, Hisashi
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.893-906
    • /
    • 2009
  • The present work presents the development of a Large Eddy Simulation (LES) methodology viable for complex geometries and suitable for the simulation of rod-bundles. The use of LES and Direct Numerical Simulation (DNS) allows for a deeper analysis of the flow field and the use of stochastical tools in order to obtain additional insight into rod-bundle hydrodynamics. Moreover, traditional steady-state CFD simulations fail to accurately predict distributions of velocity and temperature in rod-bundles when the pitch (P) to diameter (D) ratio P/D is smaller than 1.1 for triangular lattices of cylindrical pins. This deficiency is considered to be due to the failure to predict large-scale coherent structures in the region of the gap. The main features of the code include multi-block capability and the use of the fractional step algorithm. As a Sub-Grid-Scale (SGS) model, a Dynamic Smagorinsky model has been used. The code has been tested on plane channel flow and the flow in annular ducts. The results are in excellent agreement with experiments and previous calculations.

완전히 발달된 맨봉주위의 난류유동장에서 난류 응력사이의 상관 관계에 대한 연구 (Study on the Relationship Between Turbulent Normal Stresses in the Fully Developed Bare Rod Bundle Flow)

  • Lee, Kye-Bock;Lee, Byung-Jin
    • Nuclear Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.888-893
    • /
    • 1995
  • 맨봉 배열에 의해 형성되는 부수로를 흐르는 난류 유동장의 구조는 피치 대 봉직경의 비에 따라 변하게 된다. 피치 대 봉직경 비가 큰 경우에는 난류 응력 분포가 관 유동의 분포와 유사하다 그러나 피치 대 봉직경 비가 작은 경우에는 특히 간극 영역에서 난류 특성이 관 유동의 분포와는 달라진다. 완전히 발달된 맨봉 주위의 난류 유동장에서 난류응력과 난류운동에너지 사이의 선형 관계가 개발되었다. 개발된 상관 관계식은 난류 연구에 응용되는 여러 이론적 분석에 연관지어 사용될 수 있다.

  • PDF

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.

큰 외경을 갖는 튜브집합체의 삽입형 지지체 설계 (Design of Insert type supports for a tube bundle of a large diameter)

  • 김재용;김형규;윤경호;이영호;이강희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1373-1376
    • /
    • 2008
  • A supporting structure for a long tube bundle of a large diameter is considered in this paper. The primary purpose of the present study is to develop a spacer grid structure for a so-called "dual cooled nuclear fuel", which has been being studied for a nuclear power uprate. The outer diameter of the fuel rod increases considerably from the conventional one. So a completely new shape of the supporting structure (spacer grid) needs to be developed. One of the challenges is to insert a supporting tube into the cross points of the grid straps. To meet a supporting performance, the load vs. displacement characteristics should be obtained. So the present study focuses on the finite element analysis technology to evaluate the characteristics through a parametric study. As a result, major influencing parameters are investigated for an optimized spacer grid design.

  • PDF