• Title/Summary/Keyword: rockfill materials

Search Result 48, Processing Time 0.026 seconds

Evaluation of Compressibility of Rock Fill Materials by Large-Scale Oedometer Tests (대형 오이도미터 시험을 통한 Rockfill 재료의 압축성 평가)

  • Kim, Bum-Joo;Shin, Dong-Hoon;Jeon, Je-Sung;Lim, Jeong-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.627-632
    • /
    • 2005
  • In this study, a series of large-scale oedometer tests was performed to investigate the compressibility of rock fill materials. The testing samples were prepared to have three different grain size distributions and for each distribution, exist in two different states(dried and saturated). The test results indicated that particle breakages occurred mainly for the particles larger than 4.75mm in size and increased with increasing grain sizes. Also, it was found that, for a dry sample as it became well-graged, its compressibility decreased and accordingly, its tangent constrained modulus increased. A comparion between the samples in dry and saturated states revealed that compressibility of the materials increases with increasing water content. The values of tangent constrained modulus calculated for the tested dry samples were larger by about 10 to 20%, on average, than those for the saturated samples.

  • PDF

Compaction Management Criteria for Fill Materials of Concrete Faced Rockfill Dam (CFRD 축조재료의 다짐관리 기준)

  • Kim, Yong-Seong;Park, Han-Gyu;Lim, Heui-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.343-348
    • /
    • 2005
  • In this study, construction modulus, void ratio and settlement characteristics of 38 CFRD in domestic and foreign countries was investigated from monitoring data and the effect of field dry density and void ratio to dam body was analyzed. The standard void ratio of CFRD that can be easily used for dam designer and field engineer was proposed from the monitoring data. It was conformed that we can get the degree of compaction needed for reasonable compaction of dam body by calculating the field dry density from inverse operation of the standard void ratio. It was thought that the standard void ratio of CFRD is 0.2 as shape factor is under 4 and is 0.28 as shape factor is over 4.

  • PDF

A Study of MD Constitutive Model Calibration for Coarse-grained Soils (조립재료에 대한 MD 구성모델 캘리브레이션 연구)

  • Choi, Changho;Shin, Dong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • The structural stability of fill dam largely depends on the engineering behavior of rock materials used as main zone for dam construction and it is necessary to understand well the stress-strain characteristics of fill materials as well as shear strength property. In addition, the numerical analysis of fill dam requires a thorough study for calibrating material properties and parameters of a coarse-grained soil constitutive model. In this paper, large triaxial test results for Buhang-dam fill materials are analyzed and constitutive model parameters are calibrated based on the test results. It is shown that MD constitutive model is capable to predict the stress-strain behavior of dense and loose coarse-grained soils used for Buhang-dam construction based on the comparison study between the experimental test result and numerical simulation.

Long-term Settlement of High Speed Railway Embankment Compacted under Dry/Wet Condition (고속철도 토공구간 쌓기 재료의 다짐함수비 조건에 따른 장기침하 특성)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Jin-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1268-1277
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. This wetting collapse problem for the compressibility of compacted sands, gravels and rockfills, has been recognized by several researchers. For this wetting settlement problem, we showed the test results carried out with 4 fill materials. These tests were performed under the condition that the fill materials were inundated at the first wetting. Subsequently, in this study, we investigated the long-term settlement characteristics of the fill materials under the repeated partial wetting and rising of the ground water table happend by rainfall.

  • PDF

Analysis of Non-Darcy Flour in Tide Embankment (호안제체에서 Non-Darcy 흐름해석)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • The simulation results using i- V relationship of non-Darcy flow through tide embankment by Li et al.(1998) agree well to the observed data. The use of i- V relationship is applicable to the engineering practice and the correct input of porosity is necessary. The non-Darcy flow based on the pipe flow and Taylor's definition for mean hydraulics radius in rockfill material is applicable to the block and caisson materials. The correct calculation of flow through tide embankment enables the accurate calculation of velocity at final closing gap and the prediction of inner water level after tide embankment construction as well.

Analysis of the Variation of Earth Pressures and Pore Pressures on the Interfaces of Taechong Composite Dam. (대청복합댐 접합면에 대한 토압 및 간극수압의 변동분석)

  • 임희대;김상규
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.33-44
    • /
    • 1988
  • The Taechong Dam completed in 1980 is a composite dam at which a junction was formed partly by butting the core against the end face of the concrete gravity section and partly by the core overlapping the upstream face of the concrete. In order to evaluate the performance of the junction, the interfaces between the concrete dam and core of the embankment dam were well instrumented with total pressure cells and piezometers. A nonlinear incremental finite element analysis simulating its construction behaviour was carried out under plane strain conditions. Material parameters for the core are determined from triaxial tests on the specimens, sampled in the quarry site and compacted to the field dry density at the field moisture content. Material parameters for the filter, transition materials and the rockfill are estimated from literature. When compared with the earth pressures measured at the interfaces, the analytical results show good agreement in the core, however, there are some discrepancy in the shell. A nonlinear model for pore pressure response is used successfully to predict the pore pressures at the interface in the core.

  • PDF

Effects of Stiffness of Face Supporting Zone on Face Slab Behaviors of CFRD (CFRD 차수벽지지죤 강성이 콘크리트차수벽 거동에 미치는 영향)

  • Ha, Ik Soo;Seo, Min Woo;Kim, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.351-358
    • /
    • 2006
  • The purpose of this study is to recommend the simulation method and procedure of behaviors of CFRD(Concrete Faced Rockfill Dam) concrete face slab with impoundment by centrifuge tests, to examine the effects of the flexural rigidity of the concrete face slab on the face slab deformation from the centrifuge tests, and to evaluate the effects of the stiffness of face supporting zone on the displacement and moment of face slab by numerical analysis which is verified by the centrifuge tests. In this study, the centrifuge tests on the two model dams with the concrete face slab of different flexural rigidity were carried out. Also, the centrifuge tests were simulated by numerical analysis of which input material properties were obtained by the triaxial tests on the model materials. The validity of numerical analysis was evaluated by comparison between the results of centrifuge tests and numerical simulation. The deformation pattern of the concrete face slab was examined with the various stiffness of the face supporting zone by numerical analysis. From the results of centrifuge tests, the effects of face slab thickness on the deformation of face slab were negligible. From the results of centrifuge tests and numerical analysis, it was found that the amplitude of the maximum displacement of face slab and the position where the maximum displacement was mobilized with impoundment were affected by the stiffness of face supporting zone rather than the flexural rigidity of concrete face slab.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.