• Title/Summary/Keyword: rock-soil

Search Result 1,074, Processing Time 0.031 seconds

The Research on the Phytosociological Characteristics of Abies nephrolepis Maxim. Community in Mt. Seorak, Korea (설악산 분비나무군락의 식물사회학적 특성)

  • Lee, Ho-Young;Chung, Bo-Kwang;Chun, Young-Moon;Oh, Choong-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.37-47
    • /
    • 2021
  • This study carried out the plant sociological survey of Abies nephrolepis forest in Mt. Seorak, which is in danger of deterioration due to the accelerated climate change. We examined seventy quadrats obtained from the survey and used the TWINSPAN technique to classify communities. We then performed the DCA method for the sequence analysis and analyzed the characteristics of each community. A. nephrolepis forest of Mt. Seorak is composed of four communities (A. nephrolepis-Lonicera caerulea var. edulis community, A. nephrolepis-Acer komarovii community, A. nephrolepis-Ac. pseudosieboldianum community, and A. nephrolepis-Betula costata community). Each community showed a different distribution according to location because different microenvironments are formed depending on location such as altitude and slope direction, resulting in different species composition. Each community showed differences in environmental characteristics such as altitude, rock ratio, soil characteristics, and litter layer thickness. As a result, there were significant differences between communities in the number of species and individuals, coverage, tree size, and species diversity, as well as differences in species composition. The A. nephrolepis-L. caerulea var. edulis and A. nephrolepis-Ac. komarovii communities were located in high altitude with high rock ratios and had little development of tree layer. On the other hand, the A. nephrolepis-Ac. pseudosieboldianum and A. nephrolepis-B. costata communities were relatively in low altitude with high soil ratio and had the development of tree layer with high species diversity.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Taxonomical Classification of Bugog Series (부곡통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.472-477
    • /
    • 2009
  • This study was conducted to reclassify Bugog series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Bugog series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Bugog series has strong brown (7.5YR 4/6) loam Ap horizon (0~22 cm), brown (7.5YR 4/4) clay loam BAt horizon (22~41 cm), strong brown (7.5YR 4/6) silty clay loam Bt1 horizon (41~59 cm), strong brown (7.5YR 4/6) silty clay loam Bt2 horizon (59~78 cm), brown (7.5YR 4/4) silty clay loam Btx1 horizon(78~90 cm), and brown (7.5YR 4/4) Btx2 horizon(90~160 cm). That occurs on swale foot slope in area of mainly granite gneiss, granite, and schist rock materials. The typifying pedon has an argillic horizon from a depth of 22 to more than 160 cm and a base saturation (sum of cations) of less than 35% at 75 cm below the upper boundary of the fragipan. That can be classified as Ultisol, not as Alfisol. The pedon has udic soil moisture regime, and can be classified as Udult. That has a fragipan with an upper boundary within 100 cm of the mineral soil surface, and keys out as Fragiudult. Also that meets the requirements of Typic Fragiudult. That has 18% to 35% clay at the particle-size control section, and has mesic soil temperature regime. Bugog series can be classified as fine silty, mixed, mesic family of Typic Fragiudults, not as fine loamy, mixed, mesic family of Typic Fragiudalfs.

Geochemical Exploration for Tri Le REE Occurrence in Nghe An Province within Northern Vietnam (베트남 북부 네안성 칠레 희토류 산출지의 지구화학탐사)

  • Heo, Chul-Ho;Ho, Tien Chung;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.147-168
    • /
    • 2014
  • The soil geochemical exploration was carried out targeting around Tri Le area far from about 30 km with northwestern direction from Que Phong within Nghe An province. The interval of sampling are horizontal 200 m interval with 23 line and longitudinal 300 m with 10 line, resulting in 228 soil samples. Based on the result of the soil geochemical exploration, the detailed pitting survey was carried out targeting the grid point with high TREO content, resulting in 75 soil samples within 7 pits. The geology of survey area are consisted of Ban Chieng biotite granite complex and granitic gneiss intruding Ban Khang formation comprising of quartz schist and marble. Main mineralization in the study area have the characteristics of occurrence with tin, ruby and REE-bearing monazite and xenotime to be thought as occurring at the alteration zone of granite complex. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. As a analysis result with ICP-MS on the soil samples from the soil geochemical exploration, total REE oxide content of background amount to about 2 times of crustal abundance, enriching the heavy rare earth(about 2 times) and light rare earth(about 1.5 times). As a analysis result with ICP-MS on the soil samples from the soil detailed pit survey, we only identified outcrop considering as economic weathered granite body at the grid point 1-10 pit among 7 pits. As a synthetic consideration on the soil geochemical exploration and detailed pit survey, we tentatively designated Tri Le area as no promising target for REE. In 2014, we have the plan to carry out the soil geochemical exploration targeting the extended economic REE ore body in Quy Chau as project area from 2011 to 2012.

Suitability Classes for Italian Ryegrass (Lolium multiflorum Lam.) Using Soil and Climate Digital Database in Gangwon Province (강원도에서 토양과 기후 데이터베이스를 이용한 이탈리안 라이그라스의 재배 적지 구분)

  • Kim, Kyung-Dae;Sung, Kyung-Il;Jung, Yeong-Sang;Lee, Hyun-Il;Kim, Eun-Jeong;Nejad, Jalil Ghassemi;Jo, Mu-Hwan;Lim, Young-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.437-446
    • /
    • 2012
  • As a part of establishing suitability classification for forage production, use of the national soil and climate database was attempted for Italian ryegrass (Lolium multiflorum Lam., IRG) in Gangwon Province. The soil data base were from Heugtoram of the National Academy of Agricultural Science, and the climate data base were from the National Center for Agro-Meteorology, respectively. Soil physical properties including soil texture, drainage, slope available depth and surface rock contents, and soil chemical properties including soil acidity and salinity, organic matter content were selected as soil factors. The crieria and weighting factors of these elements were scored. Climate factors including average daily minimum temperature, average temperature from March to May, the number of days of which average temperature was higher than $5^{\circ}C$ from September to December, the number of days of precipitation and its amount from October to May of the following year were selected, and criteria and weighting factors were scored. The electronic maps were developed with these scores using the national data base of soil and climate. Based on soil scores, the area of Goseong, Sogcho, Gangreung, and Samcheog in east coastal region with gentle slope were classified as the possible and/or the proper area for IRG cultivation in Gangwon Province. The lands with gentle or moderate slope of Cheolwon, Yanggu, Chuncheon, Hweongseong, Pyungchang and Jeongsun in west side slope of Taebaeg mountains were classified as the possible and/or proper area as well. Based on climate score, the east coastal area of Goseong, Sogcho, Yangyang, Gangreung and Samcheog could be classified as the possible or proper area. Most area located on west side of the Taebaeg mountains were classified as not suitable for IRG production. In scattered area in Chuncheon and Weonju, where the scores exceeded 60, the IRG cultivation should be carefully managed for good production. For better application of electronic maps.

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

Geophysical surveys for delineation of leachate flows from AMD and buried rock wastes in Kwangyang abandoned mine (광양 폐광산의 산성광산배수의 유동경로 및 폐광석 탐지를 위한 지구물리탐사)

  • 김지수;한수형;윤왕중;김대화;이경주;최상훈;이평구
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.123-131
    • /
    • 2003
  • Geophysical surveys(electrical resistivity, self-potential, seismic refraction, GPR) were conducted to investigate the physical properties of the subsurface, and to delineate the flow channel of leachate from a AMD(acid mine drainage), buried rock wastes and tailings, and drainage pipes at an abandoned mine(Kwangyang mine). Especially in rainy season the sites appear to be abundant in AMD leachate, characterized by electrical conductivities of 0.98-1.10 ms/S. Electrical resistivity sections indicate that the leachate flows running in two directions at southern part rise up through the narrow fracture zones at the central part and contaminates the surrounding soil and stream. Such schematic features at the anomalous zone are well correlated with negative peaks in self-potential data, the limited penetration depth in GPR data and low velocity zone in seismic refraction data. Shallow high-resistivity zone is associated with the buried rock wastes which cause the diffractions in GPR image. In addition, the events at depth of approximately 1-1.25 m in GPR sections must be the metal pipes through which AMD is drained off to the inner bay.

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (1) (필댐의 안정성 해석 연구 (1))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys were conducted. In this paper, especially many geophysical methods were adopted to configure out the subsurface situation of dam. Applied geophysical methods were: 1) electric resistivity survey, 2) high frequency magnetotelluric (HFMT) survey, 3) ground penetrating radar (GPR) survey, 4) seismic refraction survey, 5) seismic cross-hole tomography survey, and 6) high frequency impedance (ZHF) survey. Each of geophysical surveys were analyzed and joint analyses between geophysical surveys were also performed to deduce the more reliable subsurface information of Dam by using the features and characteristics of each geophysical survey. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geophysical data and data of geotechnical gauges were also used to confirm the effects of reinforcement. Electric resistivity, EM, GPR, ZHF, seismic refraction and seismic tomography surveys show that left side of dam is weak, which means the possibility of existence of gravel, rock block, water and cavities in the core of dam. This result coincides with the boring data. Especially, electric survey after reinforcement shows that even the right side of the dam has been deformed by the strong pressure during the reinforcement itself. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

Case Study of a Stability Analysis of a Granitoid Slope in the Gansung-Hyunnae area, GangwonDo (강원도 간성-현내 지역 화강암류 비탈면 안정성 검토 사례 연구)

  • Kim, Hong-Gyun;Kim, Seung-Hyun;Ok, Young-Seok;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.331-341
    • /
    • 2012
  • Granitoid rocks are generally high-quality rock from a geotechnical perspective, because they rarely contain systematic joints or fragmented fault zones. Although the rock type at the Sanhak site is granite, a collapsed slope has a deep soil layer and shows no residual structures such as discontinuities or faults; surface avalanches from this slope can be observed in several places. To study the stability of this slope, we investigated rainfall duration, variation in pore-water pressure, and the factor of safety considering three cases (current cross-section, initial planning cross-section, revised planning cross-section). With increasing duration of rainfall, the groundwater level rises, up to 20 m in height from ground surface. In the initial planning cross-section, safety was secure for rainfall of 2 days duration, but inadequate for rainfall of 4 days duration. In the revised planning cross-section, however, safety factors were secure for rainfall of 4 days duration. Therefore, to ensure permanent stability at the Sanhak site, a slope degree of 1:1.8 should be maintained during cutting.

Evaluation on Weathering Characterization on Rock Types Using Artificial Weathering Test (인공풍화시험을 이용한 암종별 풍화특성 평가)

  • Heo, Yeul;Kang, Changwoo;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.23-32
    • /
    • 2017
  • For exposed slopes, the weathering degree over time has a major effect on the engineering properties of rocks and the slope stability. Rocks are gradually changed by weathering into soil over time, and the resulting physical, chemical and mechanical changes of rocks affect the engineering stability of the slope. However, there are not many ways to objectively evaluate the weathering degree of a slope. In this study, therefore, to investigate the weathering characteristics of rocks, granite, gneiss and shale distributed in the Chungbuk region were sampled by weathering stage and changes in their component minerals and tissues were investigated. Furthermore, artificial weathering was induced using the freezing and thawing test and quantitatively investigated through porosity and absorption rate. In addition, the changes of microcracks due to artificial weathering were evaluated through box fractal dimension ($D_B$). Through mineralogical study the phase change of constituting minerals, the growth of secondary minerals, the development of micro-cracks and the fabric changes due to weathering were observed. The mineralogical, chemical and engineering evaluations of the weathering degree through the experimental results in this study are expected to be useful for analyzing the weathering characteristics and causes by rock type and for proposing a methodology to evaluate the degradation of physical properties comparatively and quantitatively.