• Title/Summary/Keyword: rock-soil

Search Result 1,074, Processing Time 0.028 seconds

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

A Guideline to Land Suitability Used Soil Physical Characteristics and Yield potential in Panax Ginseng C.A. Mayer (인삼 수량과 토양의 물리적 특성을 이용한 재배적지 기준 설정)

  • Hyun, Dong-Yun;Hyeon, Geun-Soo;Yeon, Byeong-Yeol;Kang, Seung-Weon;Kim, Young-Cheol;Lee, Kwang-Won;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The purpose of this study was to identify soil physical characteristics as guideline for high yield potential in ginseng cultivated field which produced 6 years root. Harvest yields of ginseng to be divided by parent rock was in order of phyllite and red shale 3.1 kg/$3.3\;m^2$ > granite and gneiss schist 3.0 kg > basalt 2.6 kg > porphyry 2.2 kg in upland and forest soil. Also, with classified by topography, it was in order of foot slope and alluvial fan 3.2 kg/$3.3\;m^2$ > valley 3.0 kg > low hill 2.9 kg > hill, lave flow and dilluvial terrace 2.8 kg in survey tilth. Class determination of soil texture, it was in order of sandy loam 3.1 kg/$3.3\;m^2$ > loam and silt loam 3.0 kg > clay loam 2.9 kg > silt clay loam 2.8 kg in survey tilth. Slope condition of farming land, in case of sloping (2~7%), it was 3.1 kg/$3.3\;m^2$ but deep sloping (15~30%) caused decreasing harvest yield. In drainage classes (excessively, well and moderately well), there was no significantly different in harvest yields. Relationship between harvest yield and soil series, Production sites as yielding 3.0 kg/$3.3\;m^2$ were seven sites, also it was contained 14 soil series. Production sites as yielding 2.5~3.0 kg/$3.3\;m^2$ were eleven sites, it was contained 16 soil series. Production sites as yielding 2.0~2.5 kg/$3.3\;m^2$ were 10 sites, it was contained 4 soil series.

Hydraulic Characteristics of Mountainous Forest Soils in Korea and Applicability of Pedotransfer Functions

  • Jung, Kangho;Sonn, Yeonkyu;Hur, Seungoh;Ha, Sangkeun;Jung, Munho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.428-435
    • /
    • 2015
  • Pedotransfer functions (PTFs) were developed for each soil horizon to estimate hydraulic characteristics of mountainous forest soils in South Korea. Twenty one dominant soil series from 8 soil catenae such as granite-originated catena and volcanic ash-originated catena were selected for the study; gravel contents of selected soils were 10% or lower. Saturated conductivity (Ks) was measured for each horizon in situ. Particle size distribution and organic matter content of each horizon were also determined. Based on correlation analysis with total data set, sand separate showed positive relationship with Ks ($r=0.24^*$) while clay separate had negative relationship with Ks ($r=-0.29^{**}$). The correlation coefficients of sand, clay, and organic matter content with Ks increased to $0.41^{**}$, $-0.67^{***}$, and $0.58^{***}$, respectively, using data from granite- or gneiss-originated catena with exception of volcanic ash-originated catena and sedimentary rock-originated catena. Determination coefficients of PTFs were 0.31 for A horizon, 0.25 for B, and 0.35 for C with all data set while those were 0.74 for A, 0.48 for B, and 0.54 for C. Organic matter was a dominant factor affecting Ks in A horizon but clay content was selected as the only factor influencing Ks in C horizon. It implies that PTFs should be developed with understanding characteristics of parent materials and horizons. Developed PTFs for granite- or gneiss-originated catena were following: A horizon: Log ($K_s{\times}10^7$) = -0.031C + 0.398OM + 3.49 B horizon: Log ($K_s{\times}10^7$) = -0.028C + 0.141OM + 4.05 C horizon: Log ($K_s{\times}10^7$) = -0.072C + 4.66 where C is clay separate (%) and OM is organic matter content ($g\;kg^{-1}$). The unit of Ks is cm $sec^{-1}$.

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

Rooftop Planting Methods and Invading Species (옥상녹화 식재기법에 따른 식생변화 - 이입식물을 중심으로 -)

  • Choi, Hee-Sun;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.35-47
    • /
    • 2004
  • In order to study changes in vegetation pursuant to rooftop revegetation plantation methods, plantation methods for rooftop revegetation were divided into two types through an analysis of recent trends. Then, Planted plants and invasive plants on sites where the planting methods were introduced were monitored. Planting methods were divided into mono-layer meadow cover type and multi-layer planting cover type. They showed some differences in terms of the availability of wetland, the structure of vegetation layers, the planted species, and the material of mulching. According to the results of monitoring the two sample sites for different plantation methods, the number of invasive plants was higher in multi-layer planting cover type and the ratio of naturalized plants was higher by 30% in average in mono-layer meadow cover type. The main reason for such a result is that the natural soil used in the multi-layer planting cover type likely contained some seeds. Moreover, it's harder for invasive plant seeds to germinate in volcanic rocks than in natural soil. Also, it is attributable to wetlands available in multi-layer planting cover type and diverse living environments created by multi-layer planting. The reason of the ratio of naturalized plants being higher by at least 10% in mono-layer meadow cover type is the character of naturalized plants being stronger in unfavorable conditions than nature plants are. Accordingly, the germination rate in the volcanic rock mulching has likely contributed in raising the introduction and germination of naturalized plants. The results showed that multi-layer planting cover type using wetland creation and nature soil can increase the number of invasive plants and lower the ratio of naturalized plants. However, since seeds contained in the natural soil can affect the growth of planted plants, this needs to be clarified, It was judged that mono-layer meadow cover type may affect more greatly on the germination and growth of invasive plants than on those of planted plants, Its potential adoption in highly urbanized areas was examined. By complementing with the mutual benefits of each plantation method, it appeared possible to shift to a rooftop revegetation system suitable to the site.

Geology and Soil Environment of Jangdo Wetland, Heuksan-myon, Sinan-Gun, Cheollanamdo-province: A preliminary study (흑산도 지역 장도습지의 지질 및 토양환경: 예비조사)

  • Heo Chul-Ho;Kim Seong-Yong
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.661-667
    • /
    • 2005
  • It was preliminarily considered that Jangdo wetland was a concave landform formed by the weathering of granite intruding Precambrian silicified metasedimentary rocks. Various granite-weathered topography was observed. The formation scenario of Jangdo wetland is as follows. By flood or slope mass movement of regolith, rock fragments were moved to form a low-relief slope landform. As a result, wetland was formed. By analyzing the slope soil and wetland sediment, we conjectured that Jangdo wetland depended on the influence of peripheral slope soil. In these concavelandform environment, the supply of water and organic materials was sustained for a long time to form a organicnondegradable wetland environment. In addition, the plants appropriate to this wetland environment were settled to thicken the wetland. This is how the present Jangdo wetland was thought to be formed.

Dispersion and Enrichment of Potentially Toxic Elements in the Chungjoo Area Covered with Black Shales in Korea (충주지역 흑색셰일 분포지역에서의 잠재적 독성원소들의 분산과 부화)

  • Lee, Jin-Soo;Chon, Hyo-Taek;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.495-508
    • /
    • 1996
  • This study had three purposes: (1) to investigate dispersion and enrichment level of potentially toxic elements; (2) to identify uranium-bearing minerals in black shales; and (3) to assess the chemical speciation of heavy metals in soils and sediments. Rock, surface soil and stream sediment samples were collected in the Chungjoo area covered with black shales in Korea. These samples were analyzed for multi-elements using INAA and ICP-AES. The maximum abundance of U in black shales is 56 ppm and radioactivity counts up to 240CPM. Molybdenum, V, Ba, Cu, and Pb are enriched in black shales and most of soils show high concentrations of U, Mo, Ba, Cu, Pb and Zn. Concentrations of potentially toxic elements decrease in the order of mountain soil > farmland soil > paddy soil. Enrichment index of soils and sediments are calculated and higher than 1.0 in the black shale area with the highest value of 6.1. In order to identify U-bearing minerals, electron probe micro analysis was applied, and uraninite and brannerite in black shale were found. Uraninite grains are closely associated with monazite or pyrite with the size of $2{\mu}m$ to $10{\mu}m$ in diameter whereas brannerite occurs as $50{\mu}m$ euhedral grains. With the results of sequential extraction scheme, residual fractions of Cu, Pb and Zn in soils are mainly derived from weathering of black shale but Cu, Pb and Zn in sediments are present as non-residual fractions. Lead is predominantly present as oxidizable phase in soils whereas Zn is in exchageable/water-acid soluble phase in sediments.

  • PDF

GIS Based Analysis of Landslide Factor Effect in Inje Area Using the Theory of Quantification II (수량화 2종법을 이용한 GIS 기반의 인제지역 산사태 영향인자 분석)

  • Kim, Gi-Hong;Lee, Hwan-Gil
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.57-66
    • /
    • 2012
  • Gangwon-do has been suffering extensive landslide dam age, because its geography consists mainly of mountains. Analyzing the related factors is crucial for landslide prediction. We digitized the landslide and non-landslide spots on an aerial photo obtained right after a disaster in Inje, Gangwon-do. Three landslide factors-topographic, forest type, and soil factors-w ere statistically analyzed through GIS overlap analysis between topographic map, forest type map, and soil map. The analysis showed that landslides occurred mainly between the inclination of $20^{\circ}$ and $35^{\circ}$, and needleleaf tree area is more vulnerable to a landslide. About soil properties, an area with shallow effective soil depth and parent material of acidic rock has a greater chance of landslide.

A Research for Computation of Bearing Capacity and Settlement of Foundation Considering Scale Effect in Weathered-granite Layer (화강풍화토에서 Scale Effect를 고려한 기초의 지지력 및 침하량 산정에 관한 연구)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2004
  • When calculating bearing capacity and settlement of actual foundation from plate test result fur design and construction of shallow foundation, scale effect should be considered. But, adequate guide and test result of scale effect were not prepared yet in Korea. So, to analyze the relations of bearing capacity and settlement as the difference of loading plate sizes, model test and field loading test were performed with different loading plate on weathered-granite layer. Model tests were conducted with water content, compaction number, saturated unit weight and plate size(Dl5, 25cm) in soil-box$(2,000\times 2,000\times 1,000mm)$ formed soil layer. Field loading tests were carried out with diameters of loading plate$(D15, 25, 30, 40, 75\times 75, 140\times 210cm)$ on the same soil condition. Finally, we presented the prediction formula of bearing and settlement for computating scale offset in design of shallow foundation through result analysis of load test and numerical simulation on weathered soil and rock.