• Title/Summary/Keyword: rock-soil

Search Result 1,074, Processing Time 0.037 seconds

Characteristics of Hydrogen-sulfide(H2S) removal by a Biofilter with Organic Materials, Peat and Rock wool (유기담체인 Peat 및 Rock wool을 사용한 바이오필터에 의한 황화수소(H2S)의 제거특성)

  • Kim, Nam-jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.136-144
    • /
    • 2001
  • Two organic materials, peat and rock wool were used for removal of $H_2S$ by a biofilter inoculated with night soil sludge. By gradually increasing the inlet load of $H_2S$, the complete removal capacity, which was defined as the inlet load of $H_2S$ that was complete removed, and the maximum removal capacity of $H_2S$, which was the value when the removal capacity leveled off for organic materials, were estimated. Both values for Rock wool are larger than peat, based on a unit dry weight of material. By using kinetic analysis, the maximum removal rate of $H_2S$, $V_m$, and the saturation constant, $K_s$, were determined for all packing materials and the values of $V_m$ for rock wool was found to be larger. By using the kinetic parameters, the removal rates for $H_2S$ were compared both packing materials, and rock wool showed better performance for the removal of $H_2S$ in the inlet concentration range of 0~200ppm.

  • PDF

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

Soil Erosion Risk Assessment by Soil Characteristics and Landuse in the Upper Nakdong River Basin (토양 특성 및 토지이용에 따른 낙동강 상류지역 토양침식위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Song, Kwan-Cheol;Chun, Hyun-Chung;Cho, Hyun-Jun;Moon, Yong Hee;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.890-896
    • /
    • 2012
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Upper Nakdong River Basin according to soil characteristics and landuse using the spatial soil erosion map. The study area is $3,605.6km^2$, which consists of 2 subbasins, 35 standard unit watersheds (Andong basin 18, Imha basin 17). As a evaluation of soil erosion potential using the spatial soil erosion map, total annual soil loss and soil loss per area estimated $2,013{\times}10^3Mg\;yr^{-1}$ (Andong basin 979, Imha basin 1,034) and $6.1Mg\;ha^{-1}yr^{-1}$ (Andong basin 6.0, Imha basin 5.2), respectively. 54.2% of soil loss was originated from Arable land (Andong basin 49.0%, Imha basin 59.0%), and the area of regions, graded as higher "Moderate" for annual soil loss, was $201.7km^2$ (Andong basin 84.9, Imha basin 116.8). Average soil loss per area of unit watersheds by classification according to soil dominant parent material types ranked "Sedimentary rock group" > "Mixed group" > "Metamorphic rock group" > "Igneous rock group". In conclusion, the results of this study inform that the classification of soil parent material type would be effective for soil erosion analysis and interpretation in the Upper Nakdong River Basin.

Deformation Behaviors of Temporary Tieback Wall during Excavation Works (현장계측과 수치해석을 이용한 가설 흙막이 구조물의 변형특성 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 1995
  • During excavation works for underground facilities, temporary tieback wall with earth anchor system was investigated for safety's sake. An excavation 9.7 meter deep was monitored by slope inclinometer in twelve measuring points. Instrumented lateral displacements of the wall during 177 days are represented. Especially, lateral displacements of the two positions under completely different condition are compared to investigate the effect of backfilling between soldier pile and the soil behind wall. The deformation behaviors of the wall according to both depth and elasped time are discussed. Finally, a numerical analysis by the program FLAC was performed, and calculated displacements are compared to measured ones.

  • PDF

Micro/macro properties of geomaterials: a homogenization method for viscoelastic problem

  • Ichikawa, Yasuaki;Wang, Jianguo;Jeong, Gyo-Cheol
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.631-644
    • /
    • 1996
  • Geomaterials such as soil and rock are composed of discrete elements of microstructures with different grains and microcracks. The studies of these microstructures are of increasing interest in geophysics and geotechnical engineering relating to underground space development We first show experimental results undertaken for direct observation of microcrack initiation and propagation by using a newly developed experimental system, and next a homogenization method for treating a viscoelastic behavior of a polycrystalline rock.

Characteristics of Waste Lime and Soil Mixture for Reusing of Roadbed Embanking Material (도로노반 성토재로의 재활용을 위한 폐석회 혼합토의 특성연구)

  • Hong, Seung-Seo;Kim, Young-Seok;Lee, Yong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5157-5164
    • /
    • 2010
  • Currently about 3.2 millon tons of waste lime are accumulated and annually 100,000 tons are producted. This study was carried out to investigate the characteristics of soil mixed with waste lime for reusing of roadbed embanking material. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this study, the feasible reuse of waste lime mixed with granite weathered soil, clay, crushed rock was investigated through laboratory tests including specific gravity test, sieve analysis, hydrometer analysis, atterberg limit test, compaction test, unconfined compressive test, CBR test, permeability test, shear test, and abrasion test. The mixing rate is granite weathered soil, clay, crushed rock 80 % respectively and waste lime 20 % by weight. From the test results, it is shown that the waste lime and soil mixtures satisfy the criteria as road embanking material specification.

Analysis of Bias in the Runoff Results Due to the Application of Effective Soil Depth (유효토심을 적용한 유출해석 결과의 왜곡 분석)

  • Sunguk Song;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • This study examines the possible problem in the rainfall-runoff analysis process using the VIC (Variable Infiltration Capacity) model caused by using the effective soil depth instead of the soil depth. The parameters of the model are determined as follows. First, parameters that can be determined using available numerical information are fixed. For parameters related to direct runoff and base runoff, the recommended values of the VIC model are applied. In the case of soil depth, four cases are considered: (1) the effective soil depth is applied as the soil depth, (2) 1.5 times of the effective soil depth is applied as the soil depth by reflecting the vertical structure of the soil layer, (3) 1.25 times of the effective soil depth, and (4) 2.0 times of the effective soil depth as alternative soil depths. This study simulates the rainfall-runoff for the period from 1983 to 2020 targeting the Chungju Dam and Soyang River Dam basins of the Han River system. As a result of the study, it is confirmed that when the effective soil depth is applied instead of the soil depth, direct runoff and baseflow have opposite effects, and direct runoff increases by more than 3% while base runoff decreases by the same scale. In addition, the most influential factor in the estimation of the effective soil depth in the Chungju Dam and Soyanggang Dam basins is found to be the proportion of rock outcrop area. The difference between the direct runoff ratio and the base runoff ratio in the two basins is conformed significantly different due to the influence of the rock outcrop area.

A Design and Operation of EPBM Applied in Fort Canning Boulder Bed of Singapore (싱가포르 포트캐닝 전석층에 적용된 EPBM의 설계 및 시공)

  • Kim, Uk Young;Noh, Seung Hwan;Noh, Sang Rim
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.417-422
    • /
    • 2015
  • This paper introduces the design and operational considerations for TBM tunneling in boulder bed which poses significant problems in terms of advance rate and machine wear. Managing these problems is difficult since normal soil investigation techniques do not accurately predict the presence and frequency of boulders. This has leads to considerable extra costs and delays during construction. In this paper, EPBM design and operational parameters, cutter wear characteristics and soil conditioning method in soft ground condition were studied and key successes were highlighted for future projects in similar ground condition.