• Title/Summary/Keyword: rock-soil

Search Result 1,074, Processing Time 0.028 seconds

Peak ground acceleration attenuation relationship for Mazandaran province using GEP algorithm

  • Ahangari, Hamed Taleshi;Jahani, Ehsan;Kashir, Zahra
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.403-410
    • /
    • 2018
  • The choice of attenuation relationships is one of the most important parts of seismic hazard analysis as using a different attenuation relationship will cause significant differences in the final result, particularly in near distances. This problem is responsible for huge sensibilities of attenuation relationships which are used in seismic hazard analysis. For achieving this goal, attenuation relationships require a good compatibility with the target region. Many researchers have put substantial efforts in their studies of strong ground motion predictions, and each of them had an influence on the progress of attenuation relationships. In this study, two attenuation relationships are presented using seismic data of Mazandaran province in the north of Iran by Genetic Expression Programming (GEP) algorithm. Two site classifications of soil and rock were considered regarding the shear wave velocity of top 30 meters of site. The quantity of primary data was 93 records; 63 of them were recorded on rock and 30 of them recorded on soil. Due to the shortage of records, a regression technique had been used for increasing them. Through using this technique, 693 data had been created; 178 data for soil and 515 data for rock conditions. The Results of this study show the observed PGA values in the region have high correlation coefficients with the predicted values and can be used in seismic hazard analysis studies in the region.

Application of D-ROG technology for restoration of the subsided building (침하건물 복원을 위한 정밀 다점 주입공법의 적용)

  • Lee, Ju-Hyung;Koh, Hyo-Seog;Hong, Jin-Pyo;Park, Jae-Hyun;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.405-410
    • /
    • 2009
  • This paper presents a case study that achieved both of serviceability and safety of the building through soil reinforcement and restoration around foundations subjected to serious differential settlement using D-ROG method. The building which has one basement floor and three ground floors is founded on soft ground and differential settlement occurred to the maximum extent of 678mm. The foundation type of the building is a independent mat foundation. Soil profiles consist of landfill layer, alluvial layer, weathered rock, and soft rock. The bearing layer consisting of gravel and weathered rock is located 16.0~17.0m below the bottom of the building. As a result of soil reinforcement and restoration, the recovery ratio of more than 90% can be attained with the maximum set-up of 657mm.

  • PDF

Restoration of the Cut-slopes by Native Plant Seeding -Application on the Rock Exposed Cut-slopes at East Valley Country Club- (자생수목의 종자를 이용한 절개지의 복원 -THE EAST VALLEY C.C 사례를 중심으로-)

  • Kim, Jae-Jun;Lee, Jae-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.70-79
    • /
    • 2002
  • This study was conducted to develop environmental restoration methods for the ecological restoration of the rock exposed steep cut-slopes using native woody plants seeds by the hydro-seeding with artificial soil media. The main results are summarized as follows; 1. Quercus spp. seeded after seed treatment germinated over 80% and most of them grew well until one year. So, Quercus spp. can grow at the extremely dry rock exposed slopes revegetated by hydro-seeding with soil-fertilizer-seed mixed media. 2. The germinated seedlings grew well at the slopes oriented southeast. But in case of the survival ratio of the germinated seedlings, northwestward slopes was the best. 3. In case of the using pot seedlings of the Miscanthus sinensis var. purpurascens, it shows more beautiful scenery than the area using cool-season grasses. 4. As the results of the experiment, Albizzia julibrissin, Quercus spp. and Lespedeza crytobotrya can be useful at the restoration and revegatation of the cut-slopes. 5. At the results of the seed mixture experiment, cool-season grasses covered the ground quickly, but slowly germinated Quercus spp. and Lespedeza crytobotrya formed under story vegetation. Also, Albizzia julibrissin formed upper story vegetation will be replaced by Quercus spp. slowly.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Load Transfer Analysis of Drilled Shafts Reinforced by Soil Nails (Soil Nail로 보강된 현장타설말뚝의 하중전이 분석)

  • 정상섬;함홍규;이대수
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • In this study the load distribution and settlement of soil nailed-drilled shafts subjected to axial loads were evaluated by a load-transfer approach. Special attention was given to the reinforcing effects of soil nails placed from the shafts to surrounding weathered- and soft-rocks based on an analytical study and a numerical analysis. An analytical method that takes into account the number, the positions on the shaft, the grade, and the inclination angle at which the soil nails are placed was developed using a load transfer curve methods. Through the comparative study, it is found that the prediction by present approach simulates well the general trends observed by the in-situ measurements and numerical results SHAFT 4.0. It is also found that the reinforcing effects of soil nails increases in the order of hard-, soft- and weathered-rock since the ultimate shaft resistance far large bored piles in weathered rocks is fully mobilized after small displacements of the shaft, compared to the soft- and hard-rocks and subsequently the side resistance is transferred down to the soil nails.

Evaluation of the Applicability of FRP Grouted Reinforcing Method for Rock Slopes (암반사면에서 FRP 보강 그라우팅 공법의 적용성 평가)

  • Kim, Seong-Chan;Lee, Dal-Won
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.213-223
    • /
    • 2008
  • The instability of rock slopes caused by heavy rainfall and soil mass sliding needs the preventable and reinforcing method. The most important factor for the stability is the shear strength available in the planar part of the failure surface, which shows that a progressive failure takes place and a reinforcing of rock slope using FRP grout is effectively available. In this study, a grouting bolting interval predictions by limit equilibrium analysis and Matlab mathematical computer codes in several cases is presented for FRP reinforced rock slope. The proposed mathematical computer code can be easily applied for seeking properly FRP grout intervals prior to design and execute a reinforcement of a rock slope in practice.

  • PDF

Research on Characteristics of Natural Joint with Low Roughness (낮은 거칠기를 갖는 자연절리면의 특성 연구)

  • 이수곤;양홍석;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.745-750
    • /
    • 2000
  • The shear strength of rock discontinuities is very important in many rock engineering project including analysis of tunnel and slope. But shear strength of rock that acquired through discontinuity shear test is different from soil shear test and more complex. Shear strength is effected by the factors which are various, but it is the best influence of filling material and joint roughness. In this research, we studied shear strength characters of natural joint of phillite that was placed importance on joint roughness, JRC is less low than 8.

  • PDF

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

Application Case of Test of Revegetation Measures on Design of Slopes Revegetation and Tentative Instruction on Construction Work -With a Case of Slopes Along the National Road Between Gimcheon and Eomo - (비탈면 녹화 설계 및 시공 잠정 지침 적용사례 -김천어모구간 국도비탈면을 중심으로-)

  • Jeon, Gi-Seong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.83-94
    • /
    • 2007
  • Test application of revegetation measure was made on the roadside slope damaged by Gimcheon-Eomo national road improvement project in a bid to prevent the soil from being washed out as well as to restore the ecological environment, and the survey for assessing the effect of slope revegetation measures was conducted, beginning Sep 7 through Sep 20, 2006. In the wake of comprehensive reviewing and evaluating the surrounding topographic environment, physical and chemical characteristics of soil, germination of revegetation plants, analysis of bio mass, covering ratio and the plants appeared, revegetation measure C was found to have been most effective and desirable for further application in the area. Viewing the specific applicability by the area, revegetation measure C and C-1 appeared to be appropriate for blasting rock slope and ripping rock slope as they are efficient in preventing the slope from being washed out and in early revegetating. And revegetation measure B deemed to be effective to blasting rock slope or ripping rock slope as an alternative. And for cut slope, vegetation measure C-2 was judged to be more effective than measure D or E, while measure C-3 would be appropriateto embankment slope.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.